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ABSTRACT

NEW PATHS IN LATTICE GAUGE THEORIES

By

Giovanni Pederiva

The theory of Quantum Chromodynamics (QCD) is a crucial element in our current understanding

of the laws that govern the universe. It describes the Strong Interaction, the force that governs the

behavior of quarks and gluons and confines them at low energies into hadrons, such as protons,

neutrons and pions.

Lattice QCD (LQCD) is a numerical approach that allows non-perturbative studies of the strong

interaction at hadronic energy scales, where other theoretical methods fail. It works by discretizing

space-time on a lattice of points, fixing the fermion field to the lattice sites and representing the

gluon field as the links between them.

Our current numerical approach to Lattice QCD is based upon Markov Chain Monte Carlo

(MCMC) methods, from which statistical ensembles of lattice gauge field configurations are

generated using a discrete version of the QCD action when evaluating the path-integrals. These

calculations require the world’s largest supercomputing facilities and possible improvements or

new ideas are actively being researched. In this dissertation we present three such attempts.

First, we propose a new strategy to employ the recent advances in Machine Learning into

LQCD. In particular, we present a method to use Neural Networks to accelerate the calculations of

hadron two-point correlation functions and discuss its applicability.

The second effort we present is part of new collaborative undertaking by the OPEN LATtice Ini-

tiative (OPENLAT) to generate new state-of-the-art LQCD ensembles using the recently proposed

Stabilized Wilson Fermions (SWF) package, which also includes a modified lattice action. The

first results for the light hadron spectrum, obtained by Bayesian model averaging, are presented

indicating the excellent scaling behavior of SWF towards the continuum.

Finally, the tentative new approach of Quantum Computing for Lattice Field Theories is



introduced as a possible radical solution to the sign problem. We compare three algorithms for

quantum state preparation in the case of the Schwinger model, a toy model for QCD, and discuss

their applicability to Noisy Intermediate-Scale Quantum (NISQ) systems.
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CHAPTER 1

INTRODUCTION TO QUANTUM CHROMODYNAMICS AND LATTICE FIELD
THEORIES

Quantum Field Theories (QFT) are in theoretical physics the framework, developed over the 20th

century, in which Special Relativity and Quantum Mechanics are combined. The current best

knowledge of the microscopic world, at the subatomic scale, are best described with QFTs. The

general approach is to consider particles as quantized localized excitations of more fundamental

objects, the quantum fields. The laws governing the behavior of these fields are described using

Lagrangian formalism.

The Standard Model (SM) of Particle Physics is the QFT that describes the interactions of

the currently known fundamental particles, quarks and leptons, under three fundamental forces

—electromagnetism, the weak and strong force— and the Higgs field. A summary of the particles

included in the SM is found in Figure 1.1.
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Figure 1.1: Summary of the particles in the Standard Model [1].
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From a more technical point of view, the SM is a field theory based on three distinct local

gauge symmetry groups, each associated with a fundamental force:

SU(3)C × SU(2)L × U(1)Y︸ ︷︷ ︸
broken to SU(2)W×U(1)Q

. (1.1)

Through the Higgs mechanism, the SU(2)L × U(1)Y symmetries are broken into the SU(2)W

group associated with the weak force and the U(1)Q group associated with the electromagnetic

force. However, the piece of the SM that we are interested in this thesis is the SU(3) group, the

one associated with the strong force. In this introductory chapter, we will discuss in the general

properties of the theory of Quantum Chromodynamics (QCD) and its prevalent tool for numerical

simulations: Lattice Quantum Chromodynamics (LQCD).

Due to the non-linear nature of the strong interaction at low energies, an effect given by its

coupling constant αS being large in that regime, the perturbative approaches that are common for

the other forces, or the high energy limit of the strong force, cannot be applied. Lattice QCD is

instead a non-perturbative approach that has been widely adopted to study QCD effects at the

hadronic scale. It is based on formulating the theory on a finite lattice of points in spacetime

with spacing usually denoted a, with the fermions residing on the lattice sites while the gluons,

the mediators of the strong force, are discretized as the links connecting neighboring sites. The

discretization naturally introduces a regulator for the theory, in fact there is a momentum cut-off

equal to π/a. A simplified depiction is found in Figure 1.2.

Over the years, since its first formulation by Kenneth Wilson in 1974 [2], many successful

numerical calculations have been performed with results covering various research areas such as

hadron spectra [3], quark-gluon plasma physics [4], parton distribution functions [5], physics of

light nuclei [6] or hadronic matrix elements that can be used for physics for searches of Beyond

Standard Model (BSM) physics for example: in the case of calculating CP -violating operators

for searches of new physics and the neutron electric dipole moment (nEDM) [7]; g − 2, the

muon magnetic dipole moment [8]; double-β decay nucleon [9]. In order to obtain results from

LQCD, Monte Carlo (MC) methods are employed to generate statistical ensembles of lattice gauge
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Figure 1.2: Simplified representation of the discretization of QCD on a lattice.

field configurations from which observables are computed. This procedure, however, requires

a considerable amount of computational resources; in fact LQCD calculations routinely run on

the world’s largest supercomputers. Therefore, there is a strong motivation to research possible

numerical and algorithmic improvements for LQCD simulations. In this work, we will study some

possible paths for improving the state of current lattice QCD calculations.

This thesis is structured as follows: in the rest of this chapter, we will lay the theoretical

foundations of QCD and its discretization on the lattice, highlighting the numerical challenges that

arise. Then in Chapter 2 we will propose a new method to accelerate the calculation of hadronic

two-point functions using Machine Learning (ML). In Chapter 3 a new collaborative effort to

generate state-of-the-art lattice gauge field configurations using a set of novel improvements

will be introduced. These new ensembles, called Stabilized Wilson Fermions (SWF) utilize a

new lattice discretization called Exponential Clover Action. The results of the calculation of the

light hadron spectrum of the ensembles will be shown as a first demonstration of their scaling

properties. Finally, in Chapter 4 we will present some work related to the broader ongoing effort

to formulate Lattice Field Theories (LFT), and lattice QCD in particular, on Quantum Computers.

It is known that QC can circumvent the sign problem affecting QCD’s MC simulations by dealing

with Hamiltonian dynamics directly. However, a formulation of LQCD that is suitable for quantum
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hardware is still unknown, and work is being done on simpler models. In particular, we will

explore and compare three algorithms for quantum state preparation in the case of the lattice

Schwinger Model, i.e. quantum electrodynamics in 1 spatial dimension.

1.1 Quantum Chromodynamics in the Continuum

The theory of Quantum Chromodynamics (QCD) describes the Strong Interaction, also sometimes

called the Strong Nuclear Force. It is the theory that governs the motion of quarks and gluons, the

subatomic particles that make up the Hadrons, like protons and neutrons. QCD is contained in the

Standard Model and is arguably its most complicated part. The reason for this is the phenomenon

of confinement. In this section, we will briefly present some of the basic principles and concepts

of the theory of QCD.

The origin of QCD lay in the puzzle stemming from the large number of new particles discov-

ered with bubble chambers starting from the 1950s that were called hadrons. Since it was thought

that not all of them could be fundamental particles, a model for some constituents (that were later

identified with quarks) was needed. First, the eightfold way was proposed by M. Gell-Mann [10]

and Y. Ne’eman [11]. Then, after the proposal of a new quantum number for the quarks, called

color charge, by O. W. Greenberg [12] and M.Y. Han and Y. Nambu [13], in 1973 H. Fritzsch, M.

Gell-Mann and H. Leutwyler [14] formalized the full QCD Lagrangian.

Quantum Chromodynamics is a non-abelian gauge theory based upon the SU(3) symmetry

group. This means that all fermions in the theory come in as three-component vectors and have a

quantum number associated with the SU(3), commonly referred to as “color charge”. As opposed

to electromagnetism, where the two charges are identified with positive and negative, in QCD the

three resulting charges are identified with the three colors red (r), green (g) and blue (b).

The theory of QCD has been thoroughly tested experimentally; first deep inelastic scattering

experiments showed evidence of particles inside of protons and neutrons, then in e+e− colliders

the first direct evidence of gluons was found. In modern high-energy physics experiments, QCD is

a fundamental component in understanding the phenomenology. For example, in Figure 1.3 we see
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the perturbative QCD (pQCD) ratio of the e+e− → hadrons cross section to the e+e− → µ+µ−

one, in which the steps, for example at 4 GeV, can be inferred by considering how many active

quark flavors are allowed at a given energy (the mass of the bottom quark is ≈ 4 GeV) and

contribute to the background cross section.

10
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10 3
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ω
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ρ′

J /ψ ψ (2S )
Υ

Z

Figure 1.3: Ratio of the experimental cross section of e+e− → hadrons and e+e− → µ+µ−
as

collected by the Particle Data Group [15]. The naive quark model is the dashed green line and

perturbative QCD (pQCD) results are also shown as a solid red line. pQCD appears to agree well

to experiment in non-resonant regions of the energy spectrum.

1.1.1 The QCD Lagrangian

The main equation that characterizes a QFT is its Lagrangian density. From it, all the dynamics of

the theory can be derived, that is the equations of motion of the free particles and their interactions.

The Lagrangian of QCD
1
is the so-called Yang-Mills Lagrangian with SU(3) as the gauge group.

For Nf flavors of quarks it reads:

LQCD =

Nf∑
f=1

ψ̄f (iγ
µDµ −mf )ψf −

1

4
(Ga

µν)
2. (1.2)

1
The notation in this section is taken from [16]. Refer to the source for a more complete and formal treatment of

the matter.
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We will briefly describe what all the symbols in this equation mean, starting with Ga
µν : the Gluon

Field Strength Tensor. This is defined as

Ga
µν =

i

g0
[Dµ, Dν ] = ∂µA

a
ν − ∂νAaµ + g0f

abcAbµA
c
ν , (1.3)

where µ and ν are Lorentz indices while a is the index that runs over the generators of the SU(3)

symmetry gauge group. Here Aaµ represents the gluon field, which carries a Lorentz index and a

group generator index a, it is a spin-1 boson field. Going further, g0 represents “bare coupling” of

the strong force. fabc are the structure constants of the group SU(3); they satisfy the conditions:

[ta, tb] = ifabctc, (1.4)

where ta are the generators of the associated Lie algebra su(3). The covariant derivative Dµ is

given by:

Dµ = ∂µ − ig0taAaµ. (1.5)

Quarks are the fermions that enter the Lagrangian as the complex-valued Grassmann fields ψf

and ψ̄f with massmf . They are formally spin-
1
2
Dirac spinors that carry color charge. They come

in 6 flavors in the SM, denoted here with the index f , and these are u (up), d (down), s (strange), c

(charm), b (bottom) and t (top).

Gauge invariance is a crucial concept in QFT and it plays a fundamental role in the process of

discretization of QCD that we will see in Section 1.2. We can start understanding it by considering

the quark field, which is, in fact, a triplet of fermion fields:

ψ(x) =


ψr(x)

ψb(x)

ψg(x)

 . (1.6)

A local gauge transformation in applied to ψ(x) can be defined as:

ψ(x)→ ψ′(x) = Ω(x)ψ(x) = exp[iαa(x)ta]ψ(x), with Ω(x) ∈ SU(3). (1.7)
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The gluon field is introduced in the Lagrangian in such a way that the covariant derivative term is

invariant under the same gauge transformation, so:

Dµψ(x)→ (Dµψ(x))
′ = (∂µ − ig0A′

µ(x))Ω(x)ψ(x) = Ω(x)(Dµψ(x)), (1.8)

from which the transformation for Aµ(x) is fixed to:

Aµ(x)→ A′
µ(x) = Ω(x)

[
Aµ(x) +

i

g0
∂µ

]
Ω†(x). (1.9)

With this procedure, the whole Lagrangian of QCD is invariant under local gauge symmetry.

From the Lagrangian, we can infer some qualitative features of QCD, for example, the self-

interaction of gluons, through the three- and four-gluon vertex that come from the Ga
µνG

µνa
term.

We can also notice that QCD is flavor diagonal, meaning that all interactions do not change the

flavor of the quarks.

1.1.2 General Properties of QCD

The study of Quantum Chromodynamics and its properties is a very active field of research.

Some key features of the theory are shared with other non-abelian field theories, for example,

the self-interaction of the gauge bosons. Other prominent features instead arise when trying to

renormalize the theory, in particular when the running of the coupling is considered. At low

energies, the theory shows signs of confinement, while at high energies, it is asymptotically free.

Running Coupling When renormalizing QCD, one has to consider the Renormalization Group

Equation (RGE) for the bare parameters of the theory, i.e. the coupling gbare and the quark masses

mf
bare. These equations determine the rate at which the renormalized coupling g and the masses

vary as a function of some renormalization scale µ. The resulting differential equation in the case

of the coupling is called the beta function β(g):

β(g) =
d

d log(µ)
g(µ). (1.10)
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The result is the same for any non-abelian theory SU(N). One can expand β(g) in powers of the

coupling as:

β(g) = b0g
3 + b1g

5 + b2g
7 + . . . (1.11)

and then integrate up to an arbitrary order. This results in a specific expression for the dependency

of the coupling to the renormalization scale. The different coefficients in Equation (1.11) are

obtained by calculating the contributions of higher order diagrams and are, in general, renormal-

ization scheme dependent, starting from b0 which can be derived by the 1-loop corrections:

b0 = −
1

(4π)2

(
11

3
N − 2

3
Nf

)
. (1.12)

Here N is the size of the symmetry group SU(N) and Nf is the number of fermion species in the

theory. By inspecting the sign of Equation (1.12) one finds that any non-abelian theory where

the number of fermions is less than
11
2
N (in the actual case of SU(3) this is ≤ 16) has vanishing

coupling in the high energy limit, so we say it is “asymptotically free”.

If one performs the integration of Equation (1.10) analytically at fixed order in g by substi-

tuting Equation (1.12) into Equation (1.10) and integrating by parts, one obtains the following

(expressed here in terms of αS = g2/4π, the analog of the famous fine-structure constant αEM of

electromagnetism):

αS(µ) =
α0
S

1 +
b0α0

S

4π
log(µ2/M2)

=
4π

b0 log(µ2/Λ2
QCD

)
, (1.13)

where α0
S is the value of the coupling at some fixed energy µ̄ and stems from the the integration.

A typical choice for µ̄ is the mass of the Z boson, because we can obtain very precise experimental

data about it. It is also a suitable choice as it is a sufficiently large scale where perturbation

theory for QCD can be safely applied. The constant ΛQCD represents the typical energy at which

the interactions become non-perturbative. We can see this because as µ→ ΛQCD the coupling

diverges. This can be computed from Lattice QCD [17] and estimated experimentally; in theMS

scheme, experiments suggest that its value is ≈ 200− 300MeV.
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Figure 1.4: The strong coupling as a function of the energy scale, The data points are experimental

results; the solid black line and yellow bands represent the QCD prediction using the reported

value of the coupling at the mass of the Z boson (α0
S in our notation). Image taken from [18].

Asymptotic Freedom From Equation (1.13) it is clear that the coupling αS(µ) at high energies

decreases. This implies that as the energy of quarks increases, they are less coupled to the gluon

field and the QCD contributions to interaction processes become small. One of the main arguments

in support of the search for Grand Unification Theories (GUT) [15] is the fact that at some energy

scale, the coupling of the strong interaction becomes comparable to that of the electroweak

interaction.

At the time when the theory of QCD had just been proposed, the discovery of asymptotic

freedom, made by Gross, Wilczek and Politzer [19, 20] —who also won the Nobel Prize in 2004 for

this study— was a stepping stone in affirming that QCD was indeed the correct theory for strong

interactions.

Asymptotic freedom permits perturbative expansions in powers of the coupling for sufficiently

large energies. It is crucial, for example, at the scales of particle colliders to describe events before
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quarks and gluons hadronize.

Confinement The running of the coupling, when going towards low energies, as seen in

Equation (1.13) implies that αS ∼ 1 for energies on the order of ΛQCD. In this regime, known as

confinement, all quarks and gluons cannot appear as free particles and instead form color-neutral

bound states. These color-singlets are predominantly of two types: mesons (pairs of quark anti-

quark) and baryons (triplets of quarks), but more exotic states, such as tetraquarks, pentaquarks

and glueballs are all in principle allowed by QCD and are being studied both theoretically and

experimentally.

Quarks are said to be confined because at low energies they can only be found in bound

states. A single quark would, within a very small time scale, hadronize, which means they spawn

new quark/anti-quark pairs from the vacuum to balance the color charge and reform colorless

bound states quickly. A typical example is to consider two quarks inside a meson and try to pull

them apart. Since the coupling increases for large distances, while being pulled apart more and

more energy would be stored in the vacuum space between them, eventually spawning a new

quark/anti-quark pair. This is pictorially shown in Figure 1.5. The behavior of the strong force at

low energies also explains the large mass difference between quarks and hadrons. In these bound

states, most of the mass is, in fact, energy coming from the dynamics of the gluon field, not from

the constituent quarks. For example, the proton mass is 938MeV, while its valence quarks only

account for 10MeV.

Confinement is what fundamentally distinguishes the strong interaction from the other two

forces of the SM. It also prevents perturbative methods from being applied in the study of hadrons.

This is the reason why non-perturbative methods, such as Lattice QCD are required to fully

understand hadronic process.

1.2 Quantum Chromodynamics on a Lattice

The idea of LQCD was introduced by K.G. Wilson in 1974 [2] as a method to study confinement.

The main idea is to directly evaluate path integrals of the QCD action, in Euclidean space, by
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Energy Energy

Figure 1.5: Pictorial representation of confinement. As two color sources are pulled apart, the

energy stored in the color field between the sources increases so much that a qq̄ pair is formed

from the vacuum energy.

discretizing spacetime on a lattice. Over time, LQCD has been successfully used to perform

calculations and is now considered the most systematic approach for non-perturbative calculations.

It should be noted that LFTs are not only used for studies of QCD, but also for other QFTs.

In this section, wewill briefly describe how the discretization procedureworks, the fundamental

tools that are needed and some general results that show how successful this approach can be. In

Section 1.4, we will instead look at some of the numerical details and challenges that are open in

the field.

1.2.1 Discretization of the QCD Lagrangian

Observables in Lattice QCD are computed using Feynman’s path-integrals, not in Minkovski

space, but rather in Euclidean space by performing a Wick rotation. This is done to remove the

oscillatory nature of the exponential of the action and instead get a real “Boltzmann-like factor”.

In practice, for the expectation value of an observable O, one needs to evaluate
2
:

⟨O⟩ = 1

Z

∫
D[ψ]D[ψ̄]D[A] Oe−SQCD , (1.14)

where Z is the QCD partition function Z =
∫
D[ψ]D[ψ̄]D[A]e−SQCD

and SQCD is the euclidean

version of theQCD action, ormore simply: SQCD =
∫
d4xLQCD, note that here also the Lagrangian

is Wick rotated to Euclidean space.

2
The formal treatment of Lattice QCD and the notation is primarily based upon [21].
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Evaluating path integrals is an impossible task, as they include a sum over all possible variations

of a classical path. However, one can fix the number of degrees of freedom by introducing a finite

lattice of points at which to evaluate the integral, effectively reducing the path-integral to a product

of integrals over the field’s value at the lattice sites. Since we are dealing with four-dimensional

Euclidean space, the most straightforward choice is to fix a hyper-cubic lattice Λ:

Λ = {n = (nx, ny, nz, nt)} where nx, ny, nz = 1, 2, . . . , N ; nt = 1, 2, . . . , NT . (1.15)

Here N is the number of points in the spatial dimensions and NT is the number of points in the

temporal one (we will see later why these two are set differently and with typically NT > N ),

hence the volume is set as N3 × NT . A crucial parameter in simulations is the lattice spacing,

denoted simply as a.

The discretization procedure has two main benefits: it makes numerical evaluations of path-

integrals possible and introduces a momentum cutoff as a regulator for the theory. To connect

the lattice results to the physical world, one has to perform the continuum limit a→ 0 and the

infinite volume limit aN, aNT → ∞. In order to choose proper values for the volume and the

lattice spacing, one needs to consider both a fine enough value for a such that it resolves the

hadronic scale (so a ≪ ΛQCD) and a total volume larger than the typical scale of the lightest

particles active in the interactions, so for hadronic processes one needs to consider the Compton

wavelength of pions, for example, m−1
π .

The Wilson Gauge Action To start the formal discretization procedure of QCD on the lattice,

we begin with the fermionic part of the action. Since fermions can only be evaluated at fixed

sites, we must use finite difference to perform derivatives, in particular we consider ∂µψ(x)→
ψ(n+µ̂)−ψ(n−µ̂)

2a
. With this, the fermion action for a fixed point becomes:

SF [ψ, ψ̄] =

∫
d4xψ̄(x)(γµ∂

µ +m)ψ(x) (1.16)

→ a4
∑
n∈Λ

ψ̄(n)

[
4∑

µ=1

γµ
ψ(n+ µ̂)− ψ(n− µ̂)

2a
+mψ(n)

]
.
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In order to preserve local gauge invariance, as in the continuum case, an extra degree of

freedom must be introduced. In fact, it is clear to see that under a local gauge transformation Ω(n)

ψ̄(n)ψ(n± µ̂)→ ψ̄(n)Ω†(n)Ω(n± µ̂)ψ(n± µ̂). (1.17)

is not gauge-invariant. The problem can be solved by introducing a fieldU(n) that cancels the term

Ω†(n)Ω(n± µ̂). This is what we identify as the lattice version of the gauge fields; by convention

it is written as U(n, n+ µ̂) = Uµ(n) and transforms as:

Uµ(n)→ U ′
µ(n) = Ω(n)Uµ(n)Ω

†(n+ µ̂) (1.18)

U−µ(n)→ U ′
−µ(n) = Ω(n)U−µ(n)Ω

†(n− µ̂).

The field Uµ(n) is a collection of “links” from one lattice site to the neighboring ones and has the

fundamental property that it is orientable U(n, n − µ̂) ≡ U−µ(n) = Uµ(n− µ̂)†. Its values are

elements of SU(3). A pictorial representation is given in Figure 1.6, With this new insight, the

n+ µ̂n nn− µ̂

U−µ(n) ≡ U †
µ(n− µ̂)Uµ(n)

Figure 1.6: Schematic representation of the link variables Uµ(n) and U−µ(n) on the lattice.

gauge-invariant lattice fermion action is:

SF [ψ, ψ̄] = a4
∑
n∈Λ

ψ̄(n)

[
4∑

µ=1

γµ
Uµ(n)ψ(n+ µ̂)− U−µ(n)ψ(n− µ̂)

2a
+mψ(n)

]
. (1.19)

The link field Uµ is related to the path-ordered product (P) of the gauge field Aµ(x) along

some curve:

G(x, y) = P exp

(
ig0

∫
C
Aµ(x

′)dx′µ
)
. (1.20)

This quantity is the so-called “gauge transporter” [16] in the continuum. It has the property of

connecting in a gauge covariant manner two points in spacetime. Hence it is clear to see the

analogy with the lattice link variables. From Equation (1.20) it is easy to see that for small lattice
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spacing a one can expand:

G(n, n+ µ̂) ≡ Uµ(n) = exp(iaAµ(n)) = 1+ iaAµ(n) +O(a2) (1.21)

G(n, n− µ̂) ≡ U−µ(n) = exp(−iaAµ(n)) = 1− iaAµ(n− µ̂) +O(a2).

The gauge transporter is naturally gauge-invariant when evaluated on closed loops, and this

property also applies to the discretized version of the theory. In particular, one can use the minimal

loop, the so-called “Plaquette” (see Figure 1.7) as a building block for a discretized version of the

gluonic part of the QCD action. Therefore, one can show, using Equation (1.21) that:

Pµν(n) = Uµ(n)Uν(n+ µ̂)U−µ(n+ µ̂+ ν̂)U−ν(n+ ν̂) (1.22)

= Uµ(n)Uν(n+ µ̂)U †
µ(n+ ν̂)U †

ν(n)

≈ exp
[
ia2Gµν(n) +O(a3)

]
.

U−µ(n+ µ̂+ ν̂) = U †
µ(n+ ν̂)

U−ν(n+ µ̂) = U †
ν(n+ ν̂)

Uµ(n)

Uν(n+ µ̂)

xν

xµ

Figure 1.7: The Plaquette, as defined on the lattice, is the oriented product of the link variables of

a minimal square in the plane µν.

It is easy then to use the result of Equation (1.22) to construct the gauge part of the action:

SG =
1

4g2

∫
d4xGµν(x)

2 → a4

2g2

∑
n∈Λ

∑
µν

Tr(Gµν(n)
2) =

2

g2

∑
n∈Λ

∑
µ<ν

Re [Tr (1− Pµν(n))] .

(1.23)
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Equation (1.23) is the so-called Wilson Gauge Action and is the simplest possible discretization for

the Yang-Mills action on a lattice.

1.2.2 Lattice Fermions

The discretization of the fermion action given by Equation (1.19) is incomplete, as it contains

unphysical results. To better understand this, one needs to look at the Fourier transform of the

propagator. Introducing the lattice Dirac matrix Dxy[U ] between two lattice sites x and y:

SF [ψ, ψ̄] = a4
∑
n∈Λ

ψ̄(x)Dxy[U ]ψ(y), (1.24)

where

Dxy[U ] =
4∑

µ=1

γµ
Uµ(x)δx,(y−µ̂) − U †

−µ(x)δx,(y+µ̂)

2a
+mδx,y. (1.25)

Its Fourier transform is:

D̃pq = δ(p− q)D̃(p) where D̃(p) = m1+
i

a

4∑
µ=1

γµ sin(pµa). (1.26)

The inverse of D̃pq is related to the Dirac propagator and results in:

D̃(p)−1 =
−ia

∑
µ γµ sin(pµa) +m∑

µ sin
2(pµa) +m2

. (1.27)

Going back to position space, via an inverse Fourier transform, we obtain an expression for the

quark propagator :

D−1(x; y) =
1

|Λ|
∑
p∈Λ̃

D̃(p)−1eip(̇x−y)a. (1.28)

Equation (1.27) has the expected pole in the limit ofm→ 0, but also 15 other unphysical poles

residing at the corners of the first Brillouin Zone (any value of pµ where all of its components are

either 0 or π
a
). This is referred to as the “fermion doublers” problem, and a solution was already

proposed by Wilson in his first paper on discretizing QCD on a lattice [2]. First, it should be noted

that the problem vanishes in the continuum, when a→ 0, so this is a pure discretization effect.

The solution is then to add additional terms to the fermion action in such a way that they cancel
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the doublers without changing the theory in the continuum. The simplest such term is the Wilson

term, which modifies D̃(p) as:

D̃W (p) = m1+
i

a

4∑
µ=1

γµ sin(pµa) + 1
1

a

4∑
µ=1

(1− cos(pµa)). (1.29)

This leaves the pole atm = 0 intact, but it is clear that the additional cosine piece vanishes in the

continuum. In coordinate space, this becomes:

DW
xy [U ] =

1

2a

±4∑
µ=±1

(1− γµ)Uµ(x)δx,(y−µ̂) +
(
m+

4

a

)
δx,y, (1.30)

with the handy notation of γ−µ = −γµ. With this definition, we can then write the final form of

the Wilson fermion action:

SW [ψ, ψ̄] = a4
∑
n∈Λ

ψ̄(x)DW
xy [U ]ψ(y). (1.31)

TheWilson action, by construction, is correct up to orders ofO(a). One can, in principle, design

other terms that systematically improve this discretization by adding higher-dimensional terms

that cancel exactly the O(a) errors. This is known as the Symanzik improvement program [22]

and for the Wilson action the first order correcting term is the so-called “Clover Term”, computed

first by B. Sheikholeslami and R. Wohlert [23]:

SSW = SW − 1

2
cSWa

5
∑
n∈Λ

ψ̄(n)σµνGµν(n)ψ(n). (1.32)

The Clover Term is called this way because of the way the gluon field tensor is discretized,

which resembles a clover leaf, see Figure 1.8. More precisely, the O(a2) improved definition of

Gµν on the lattice is:

Gµν =
1

8
[Qµν −Qνµ] (1.33)

with

Qµν = Pµν(n) + Pν−µ(n) + P−νµ(n) + P−µ−ν(n). (1.34)

In Chapter 3 we will see a modified version of the clover term, part of the Stabilized Wilson

Fermions (SWF) package.

16



xν

xµ

Figure 1.8: Schematic representation of the symmetric definition of the clover term Qµν(n) on the

lattice. The field strength tensor for a plane µν at a lattice site is given by the average of all the

for plaquettes that start from a site n, all taken with the same orientation.

1.2.3 Different Types of Lattice Actions

The Wilson-Clover action seen in Equation (1.32) is only one of the possible choices for a lattice

fermion action. As discussed in the previous section, one is free to add any term to the Dirac

matrix as long as it vanishes in the continuum. Over the years, there has been active research

in designing different actions, each with its own benefits and downsides. Here we will briefly

mention the most important classes.

• Wilson-Clover Fermions: these are the ones we already discussed. It is the most straight-

forward way to remove the fermion doublers problem, however, it explicitly breaks chiral

symmetry. Still, clover fermions have been extensively used in LQCD calculations over

the years. Some of the field’s most remarkable results, such as the light hadron spectrum,

which is in complete agreement with experimental data, have been obtained with this

discretization, see Figure 1.9.

• Ginsparg-Wilson Fermions: this discretization is obtained by imposing the requirement of

preserving chiral symmetry exactly on the lattice through the Ginsparg-Wilson equation [24].

However, this is done at the expense of the locality of the action. In practice, the two main

types of actions of this class, Domain-wall [25–28] and overlap fermions [29, 30], have a
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much higher numerical cost compared to other discretizations, but are still extensively used

due to their properties.

• Staggered Fermions: these don’t remove the fermion doublers explicitly, but instead dis-

tribute their values on multiple lattice sites, leading to 4 “tastes” (an unphysical analogous of

flavor) that have to be removed afterwards. Introduced first by J. Kogut and L. Susskind [31].

Staggered fermions are widely used because of their relatively cheap computational cost

and practicality, especially in finite-temperature QCD [32]. In Chapter 4 we will apply this

discretization to the Schwinger Model.

• Twisted-Mass Fermions: these are very similar to Wilson fermions, but have an additional

rotation in flavor space (the twist) that partially preserves chiral symmetry [33–35]. However,

this procedure breaks isospin symmetry instead.

Figure 1.9: Light Hadron Masses as calculated from the Budapest-Marseille-Wuppertal (BMW)

collaboration [3] using Wilson-Clover fermions. The gray lines and bands represent the experi-

mental data, the blue circles are the input used to fix the scale, while the LQCD calculation results

are the red points.
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1.3 Numerical Evaluation of Path Integrals on the Lattice QCD

When performing numerical calculations of QCD on a lattice, as shown in the previous section,

for a given observable O, one numerically has to evaluate the path integral:

⟨O⟩ =
∫
DψDψ̄DU O e−SE [ψ,ψ̄,U ]∫
DψDψ̄DUe−SE [ψ,ψ̄,U ]

. (1.35)

This is done by first selecting a discretized lattice action:

SE[ψ, ψ̄, U ] = SG[U ] + SF [ψ, ψ̄, U ] = SG[U ] + ψ̄M [U ]ψ. (1.36)

In the path integral, at every point, there are three fields to consider, U , ψ, ψ̄. However, the

fermion fields can be integrated exactly using the properties of Grassmann numbers, in particular,

for any given matrix K one has:∫
DΘ∗DΘe−Θ∗KΘ =

(∏
i

∫
dθ∗i dθi

)
e−θ

∗
iKijθj =

(∏
i

∫
dθ∗i dθi

)
e−

∑
i θ

∗
i kiθi (1.37)

=
∏
i

ki = detK.

This simplifies the form of the denominator of Equation (1.35), the partition function, which

becomes:

Z =

∫
DψDψ̄DUe−S[ψ,ψ̄,U ] =

∫
DUe−SG[U ] detM [U ]. (1.38)

For the numerator, if O does not depend on the fermion fields, we can apply the same result, but

if it depends on a fermion bilinear, a more general form of Equation (1.37) is needed:∫
DΘ∗DΘθ∗aθbe−Θ∗KΘ =

(∏
i

∫
dθ∗i dθi

)
θ∗aθbe

−θ∗iKijθj =

(∏
i

∫
dθ∗i dθi

)
θ∗aθbe

−
∑

i θ
∗
i kiθi

(1.39)

= (detK)(K−1)ab,

which results in:

⟨O[ψ(n), ψ̄(m), U ]⟩ = 1

Z

∫
DU O[M [U ]−1, U ]e−SG[U ](detM [U ]). (1.40)
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If multiple fermions appear in the observable, those need to be contracted using Wick’s theorem.

However, their dependence still only enters as the inverse of the Dirac matrixM [U ], which in

turn only depends on the gauge field.

The form of Equation (1.40) cannot be simplified analytically any further. However, it is

very suitable for numerical integration using Monte Carlo methods. In fact one can identify

the term P [U ] = e−SG[U ] detM
Z

as a Probability Distribution Function (PDF), notice that it only

depends on the gauge field U , and draw random samples from it in what we call an ensemble

U = {U1, U2, . . . , UN}. The expectation value of the observable then becomes the ensemble

average of O computed on the gauge field configurations of U :

⟨O⟩ =
∫
DU P [U ]O[ψ, ψ̄, U ] ≈ 1

N

∑
Ui∈U

O(ψ, ψ̄, Ui). (1.41)

The problem is now reduced to finding a suitable procedure for drawing gauge field configurations

from the PDF. The most widely used method is via Markov Chain Monte Carlo methods (MCMC)

like the Metropolis-Hastings, Heat Bath or Overrelaxation algorithms. In practice, today, the

Hybrid Monte Carlo algorithm, which we will describe in Section 1.3.1, is the most widely used

one. Recently more novel approaches have been proposed, for example, using flow-based machine-

learning algorithms [36, 37].

1.3.1 The Hybrid Monte Carlo Algorithm

The Hybrid Monte Carlo (HMC) algorithm was first proposed for Lattice QCD calculations in

1987 by S. Duane et al. [38] and it is now utilized in broader contexts, such as machine learning,

with the different name, but fortunately with the same acronym, of Hamiltonian Monte Carlo.

The key idea is to combine microcanonical updates, performed with Hamiltonian dynamics, and a

Metropolis accept-reject condition to maintain ergodicity.

The microcanonical part of the algorithm, often times called the Molecular Dynamics (MD)

update for the analogy with other Hamiltonian dynamics simulations, is based on the observation

that for a given bosonic field Q one can introduce a real field P that it is its conjugate momentum.
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An observable that depends on Q can then be calculated as:

⟨O⟩Q =

∫
DQ O[Q] e−S[Q]∫
DQ e−S[Q]

=

∫
DQ O[Q] e−

1
2
P 2−S[Q]∫

DQ e−
1
2
P 2−S[Q]

= ⟨O⟩Q,P (1.42)

The expectation value does not change as the Gaussian integrals for P cancel. This formulation

represents a non-relativistic microcanonical ensemble whose Hamiltonian is H[Q,P ] = 1
2
P 2 +

S[Q] and its equation of motion are:

Ṗ = −∂H
∂Q

= − ∂S
∂Q

, (1.43)

Q̇ =
∂H

∂P
= P.

One can utilize these equations to move from one lattice gauge configuration to another along the

Markov Chain. To perform the Hamiltonian evolution, one uses regular algorithms developed for

MD, such as the Leapfrog algorithm, which is widely used for its reversibility properties. Since

the MD update carries errors coming from the numerical integration, usually of O(ϵ2) where ϵ is

the time-step size, to enforce ergodicity one performs a Metropolis accept-reject check. So the

transition probability between two configurations before and after the MD update is:

T (P ′, Q′|P,Q) = min

(
1,

exp(−H[P ′, Q′])

exp(−H[P,Q])

)
= min (1, exp(−∆H)) . (1.44)

This can be shown to satisfy detailed balance, hence making it suitable for MCMC calculations.

1.3.2 Hadron Correlators on the Lattice

In order to study the properties of hadrons on the lattice, like their mass, one needs to find a

suitable way to construct operators out of quark fields that match the desired hadron’s quantum

numbers. In practice, the calculation of hadron correlators is what is performed on the lattice.

These are two-point functions that are usually interpreted via spectral decomposition:

C(t) = a3
∑
x

⟨O(t,x)Ō(0,0)⟩ =
∑
k

⟨0| Ô |k⟩⟨k| Ô† |0⟩e−tEk , (1.45)

where O(t) is what is called an interpolating operator. It is a combination of quark fields with

the same quantum numbers of the hadron under consideration, but also of all its excited states.
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These cannot be distinguished on the lattice, so all of them propagate at one. For this reason, one

needs to consider the time dependence of the two-point function, as their propagation is different

because of the e−tEk
factor, which makes heavy excited states decay very quickly in signal on the

lattice. In contrast, the stable ground state is easily recovered in the t → ∞ case. We will see

more of the details later in this section.

In this work, we will extensively use these interpolating operators:

Pion: Oπ+(x) = d̄(x)α,c(γ5)αβu(x)β,c

Kaon: OK+(x) = s̄(x)α,c(γ5)αβu(x)β,c

Proton: OP (x) = ϵabcu(x)α,a

(
u(x)Tβ,bC(γ5)βγd(x)γ,c

)
Omega: OΩ(x) = ϵabcus(x)α,a

(
s(x)Tβ,bC(γ5)βγs(x)γ,c

)
. (1.46)

The correlator is then the contraction between O(x) and Ō(y). For pions, for example, it is:

⟨Oπ+(x)Ōπ+(y)⟩ =

= ⟨d̄(x)α1,c1
(γ5)α1β1

u(x)β1,c1ū(y)α2,c2
(γ5)α2β2

d(y)β2,c2⟩

= −⟨(γ5)α1β1
d̄(x)α1,c1

d(y)β2,c2(γ5)α2β2
ū(y)α2,c2

u(x)β1,c1⟩

= −⟨Tr
[
γ5D

−1
u (y, x)γ5D

−1
d (x, y)

]
⟩G (1.47)

for the proton and the Ω baryon the contraction is slightly more involved, as there are more

possible contractions of the quarks of identical flavor. In this case, Wick’s theorem is used to

compute all terms that contribute to the correlator while keeping track of the relative signs coming

from the anti-commutation relations, but it is diagrammatically shown in Figure 1.10.

Figure 1.10: Schematic representation of the possible quark contractions for a proton interpolating

operator.
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The term, for a generic quark flavor q, that appears in Equations (1.46) and (1.47) is, when

contracted, the equivalent of the inverse Dirac operator between the two points where the quarks

fields are located:

⟨q(x)α,aq̄(y)β,b⟩ = D−1(y, x)αβab . (1.48)

From Equation (1.47) we see that in order to calculate the expectation value of the quark correlator,

one needs the expectation value, computed over a gauge ensemble, of the trace of the appropriate

(depending on the hadron) quark propagators D−1(y, x). In principle, this requires the inversion

of the whole Dirac matrix, but this is not feasible numerically due to the large size of the matrix.

In practice, the problem of determining the quark propagator is reformulated in terms of a linear

system by fixing a point source:

ηβ,b(0) = δb,c1δβ,α1δy,(y,0). (1.49)

This source is a simple Kronecker delta in space, Dirac and color indices. The problem is then

reformulated as:

D(0, x)αβab q(x)α,a = ηβ,b(0).

This is equivalent to computing only one column of the inverse matrix. Since we are still interested

in all possible combinations of Dirac and color indices, in practice, a total of 3× 4 = 12 different

source vectors are to be solved. The exact form of the Dirac operator matrix depends on the lattice

action; in the case of the Wilson-Clover action, it is a very sparse matrix because fermions at one

lattice site are only linked to their nearest neighbors.

This kind of linear system is usually solved using iterative methods. One of the simplest ones

is the Conjugate Gradient, but many variations are used. For example, the BiCGSTAB [39] is a

common choice for non-hermitian operators. These iterative solvers are terminated at convergence:

when for a small parameter ϵ:

||Axn − b|| < ϵ

Recently, there has been much research on faster and more efficient algorithms, such as the

SAP [40] and Multi-Grid [41] algorithms. In Chapter 2 we will discuss more about the details of
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the quark propagator solvers, as we will try to find a machine learning method to speed up the

calculations.

1.3.3 Correlation Functions and Effective Masses

One can extract properties of hadrons propagating on the lattice from the correlation function of

Equation (1.45). An obvious first choice would be that of the mass. In Figure 1.11 we can see the

typical behavior of C(t) for the pion and the nucleon.
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Figure 1.11: Example of pion (left) and proton (right) correlators from an ensemble of the PACS-CS

collaboration [42]. The lattice size is 323 × 64, the lattice spacing is a = 0.0907(13) while the
pion massmπ = 567.6(3), on the x-axis the time is reported in lattice units, as standard practice.

As expected, there is an exponential decay in time, both for positive and negative values

around the point t = 0where the source is located; this behavior is given by the periodic boundary

conditions. The asymmetric shape of the baryon correlators is due to the mass difference of the

positive and negative parity states, which both propagate from the same interpolating operator.

The degradation of the signal of the nucleon correlator is due to the Signal-to-Noise problem,

which we will discuss more in Section 1.4.2.

The simplest possible way to extract hadron masses is to look at the “effective mass”. It is

easily obtained from taking the logarithm of Equation (1.45):

meff(t) = ln

[
C(t)

C(t+ 1)

]
. (1.50)
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In the limit of t→∞ the functionmeff(t) has a plateau whose value is the lowest energy of the

spectrum of the hadron interpolating operator. One can then fit a constant to this plateau to get an

estimate of the mass (see Figure 1.12). In Chapter 2 we will use this procedure, while in Chapter 3,

a more involved analysis for the determination of hadron masses will be presented.
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Figure 1.12: Example of pion (left) and proton (right) effective mass, computed following

Equation (1.50) for the correlators in Figure 1.11 from an ensemble of the PACS-CS collabo-

ration [42]. The lattice size is 323 × 64, the lattice spacing is a = 0.0907(13) while the pion mass

mπ = 567.6(3).

1.3.4 Smearing Techniques

A common technique for improving the correlators’ signal is to use gauge link smearing. Since,

most of the time, one is interested only in the ground state of the hadron state, one is free to

modify the interpolating operator freely to increase its overlap with the ground state. Many

different smearing procedures have been proposed, for example APE [43], HYP [44] or Stout [45]

smearing. In this work, we employ the Gaussian gauge-invariant smearing technique introduced

by S. Güsken [46]. The starting ansatz is that the hadron operator can be constructed from the

fermion field ψ(x, t) smeared with an appropriate wave-function F (x, x′):

ψ̃(x, t) =
∑
x′

F (x, x′)ψ(x, t) =
∑
x′

[δx,x′ + αH(x, x′)]ψ(x, t) (1.51)
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where H(x, x′) is the hopping matrix:

H(x, x′) =
3∑

µ=1

Uµ(x)δx′,x+µ̂ + U †
µ(x− µ̂)δx′,x−µ̂ (1.52)

the parameter α represents the strength of the coupling between neighboring links, hence the

smoothness of the smearing. Equation (1.51) is one step of the smearing procedure, in practice,

there are Nsmear applications of that same equation. The scheme then is characterized by two

parameters (Nsmear, α). When applying this procedure to quark propagators, the algorithm is as

follows:

1. Create a smeared source at z and smear it withNsmear applications of F : Q(z) = FN
smear(z, 0)

2. Solve the modified linear system:∑
y,t

M(z, t; y, t′)(q̃)−1(y, t′; 0) = Q(z)δt,0, (1.53)

with

(q̃)−1(y, t′; 0) =
∑
z

q−1(y, t′; z, 0)F (z, 0), (1.54)

3. Finally, multiply the smeared propagator with the wave function F again:∑
z

q−1(y, t′; 0) =
∑
y

(FN)
†
(q̃)−1(y, t; 0) (1.55)

.

One thing to note is that the last step is optional, in which case the “sink” is point-like and not

smeared. The propagator computed this way is not positive definite, but can be useful for methods

such as the variational method [47, 48] or matrix-Prony methods [49, 50]. Throughout this work,

we will label the possible configuration of point or smeared sinks with the obvious notation of

PS (point sink, smeared source) and SS (smeared sink, smeared source).

1.4 Modern Lattice QCD

Lattice QCD is now a mature field with well-established practices regarding the generation

of configurations, the measurement of observables and their analysis. In this section, we will
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first outline how simulations in LQCD are performed and later highlight some of the numerical

challenges that are currently affecting them.

1.4.1 Structure of LQCD Calculations

Current LQCD simulations are primarily performed with dynamical fermions, meaning that the

PDF used for generating the Markov Chain for the gauge field ensemble includes the fermion

action (as opposed to “quenched simulations”). The light quarks are usually considered to be

degenerate, while all other flavors have to be simulated separately. The usual labeling nowadays

is that of 2 + 1 for simulations with degenerate u, d quarks and the s quark, and 2 + 1 + 1 for

simulations that also add the c quark.

For numerical reasons and in order to correctly estimate the systematic uncertainties, LQCD

calculations are not performed on a single ensemble of gauge field configurations. In fact, we

have already seen, in Section 1.2.2, that the lattice action is only correct up to a fixed order in the

lattice spacing a and contains artifacts that need to be removed to recover the continuum theory.

So one needs several ensembles at different values of a and perform the continuum extrapolation

(a→ 0). Another extrapolation that is usually performed is that of the infinite volume (L→∞)

to make sure that the systematics introduced by the finite size of the simulation are accounted for.

In Section 1.3 we also have noticed that the condition number of the Dirac matrix approaches

zero for smaller values of the quark mass. This makes calculation at the physical value numerically

expensive. A way to circumvent this problem is to measure observables at different values of the

pionmassmπ and later extrapolate to the physical point. This is known as the “chiral extrapolation”.

Recently some calculations with physical mπ have become accessible due to improvements in

computing hardware.

Since generating gauge field configurations is computationally very expensive, it is standard

practice to save them to disk space, effectively separating the running of the MCMC algorithm

from the measuring of observables into two distinct tasks. Here is a rough sketch of how the

calculation is then performed:
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1. Generate with MCMC methods a set of gauge field ensembles with different physical

characteristics (lattice spacing, volume, quark masses), sampling from a PDF determined

by choice of the lattice action. As already mentioned, this is numerically challenging and

requires large High Performance Computing (HPC) facilities, often with several computing

nodes at a time, because of the high cost of the MD updates. Therefore, several collaborations

generate ensembles and share their configurations among their members or make them

publicly available. In Chapter 3, we will see a new effort of this type, the Open Lattice

Initiative (OPENLAT).

2. Since most of the observables require computing quark propagators, performing measure-

ments is also a relatively expensive task from the numerical point of view. In fact, solving

the linear systems is challenging because of the sheer size of the Dirac matrix and the poor

convergence properties of linear solvers, especially when dealing with light quark masses.

The measurement of observables, however, can be be performed on different hardware than

the the one for MCMC algorithms, in particular today these are mostly performed on GPU

nodes at HPC facilities, with usually only very few nodes, while the parallelization is done

at the configuration level (running multiple small jobs, one per configuration, at once).

3. Once the observables are computed over a set of configurations, expectation values are

evaluated, often using resampling methods such as bootstrap [51] or jackknife, see Ap-

pendix 1A.2 for more details, and the extrapolations to infinite volume, continuum and

physical quark mass are performed. All of this procedure is done to obtain reliable estimates

of the statistical and systematic uncertainties. In doing this, also the autocorrelation of the

MCMC needs to be taken into account, see Appendix 1A.1

4. In order to compare results coming from LQCD to experimental values, one needs to

determine a physical scale for the lattice. In fact, all quantities computed on the lattice are

expressed in terms of the lattice spacing a, so a physical quantity has to be used to set its

value to the proper units. A similar procedure has to be performed for the quark masses as
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well. In general, one needs 1 +Nf physical quantities to fix the scale.

Scale setting is a research field on its own andmany different possibilities have been explored,

such as using the static quark potential (from which the Sommer scale r0 is obtained) [52],

heavy baryons like the Ω [53], or the gradient flow [54]; the latter is the one that will be

used throughout this work, more details can be found in Appendix 1C.

1.4.2 Current Numerical Challenges in LQCD

The approach presented in the previous section has been very successful, however, there are

some limitations to the current approach that prevent, for example, large-scale simulations at the

physical point with small lattice spacing. In this section, we will briefly present some of them.

Critical Slowing Down An important quantity in MCMC algorithms is the autocorrelation

time. It is a measure of how much the samples of a given chain are correlated with each other.

Ideally one would want all the samples to be independent from each other. In LQCD calculations,

since the typical size of the ensembles is rather small, it is critical to ensure the independence of

the gauge field configurations or at least account for their autocorrelation as a systematic error.

For a more detailed description, see Appendix 1A.1.

When approaching the critical point of a theory the autocorrelation time increases. In the

case of LQCD, this happens when the lattice spacing approaches zero. Calculations at small a

are already more expensive as the total volume in physical units is usually kept constant, so the

lattices tend to have more points towards the continuum limit. However, due to the phenomenon

of “critical slowing down”, the autocorrelation time also increases, further augmenting the cost of

these simulations.

Lattice QCD has, as opposed to the continuum theory, a non-fixed topology. The topological

charge of the configurations in an ensemble fluctuates and its distribution is supposed to be

Gaussian. When approaching the continuum, different topological sectors become increasingly

separated and the MCMC algorithms, such as the HMC, struggle to sample all the sectors properly.
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This is the phenomenological explanation for the critical slowing down. For a more detailed

explanation of topological effects in LQCD, see Appendix 1B.

Dirac Matrix Condition Number As discussed in Section 1.3, the linear solver for quark

propagators is solved iteratively, using Krylov-subspace linear system solvers. This means that if

after n iterations the solver has satisfied the inequality

∥rn∥ < ϵ ∥η∥ , (1.56)

one says that the quark propagator is obtained with accuracy ϵ and terminated the algorithm. In

general, ϵ is chosen to be small enough that any effects coming from the linear solver truncation

are smaller than the stochastic uncertainties coming from ensemble averages of observables.

Rewriting the above relation as

∥DS −Dψn∥ < ϵ ∥DS∥ , (1.57)

and using standard bounds from the matrix norm inherited from the L2 vector norm, one deduces

that the relative deviation of the solution after n solver iterations, ψn and the real solution S

∥S − ψn∥ < ϵκ(D) ∥S∥ , (1.58)

is controlled by ϵ and the condition number of the matrix D

κ(D) = ∥D∥ ·
∥∥D−1

∥∥ =

√
λmax(D†D)

λmin(D†D)
, (1.59)

where we have used the matrix norm induced by the spectral radius of the matrix D.

In lattice QCD the lowest eigenvalue ofD†D is proportional to the quark mass squared and the

largest eigenvalue is proportional to the inverse lattice spacing squared. The implication is that as

the quark mass is decreased, the linear system becomes increasingly ill-conditioned, leading to

longer iteration times and possible failures in the solver algorithm.
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Figure 1.13: Contractions of the square of a proton interpolating operator.

Signal to Noise When calculating baryonic observables in LQCD, an insurmountable problem

is that of the Signal-to-Noise. The variance of an observable is defined as σ2(O) = ⟨O2⟩−⟨O⟩2. In

Figure 1.10, we showed the contractions for a single proton, but the possible contractions for the

squared of the operator would be as in Figure 1.13. As shown pictorially, there are more possible

contractions: one is the expected two baryon system, while another possible one is that of three

pions propagating.

Because on the lattice, in the large t limit, the lightest state dominates, the above picture is

problematic, as the variance will be dominated by the three pion state and not by the two nucleons

one. In detail, the signal-to-noise can be given by:

StN =
⟨O⟩
σO
∝ e−tmp

e−
3
2
tmπ

= exp−t(mp −
3

2
mπ) (1.60)

This poses a challenge in extracting the ground state of such hadrons, as for small t the correlator

is contaminated by excited states, but for large t the signal is lost due to noise. This effect becomes

stronger as the mass gap between the nucleon and the pion increases, i.e. when approaching the

physical point. Strong evidence of this problem can be seen in Figure 1.12 where the pion correlator

and effective mass have a very smooth behavior and constant signal-to-noise. In contrast, the

proton data clearly shows degradation of signal towards the center of the lattice.

To summarize, Lattice QCD is a mature field of research that is now a crucial component in

our understanding of the SM. Thanks to the advances in computing power and numerical methods

it can now be used for precision calculations of non-perturbative phenomena. There are, however,
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some challenges that need to be addressed either with small incremental improvements to more

traditional approaches, like new lattice discretizations or better algorithms, or even with entirely

novel methods such as Machine Learning or Quantum Computing among others.
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APPENDIX 1A

TOOLS FOR STATISTICAL ANALYSIS IN LATTICE QCD

1A.1 Autocorrelation of Data

One inherent characteristic of Markov Chain Monte Carlo methods is the correlation between

samples along the chain. This effect, called autocorrelation, is rather intuitive since the algorithms

work by modifying the latest element on the chain by some random value, which naturally implies

that the new element has some relation with the previous one if the change is not sufficiently

large. This phenomenon leads to an effective decrease of the sample size as not all configurations

are statistically independent. It is thus crucial to consider autocorrelation effects in MCMC

calculations.

A measure of autocorrelation is given by the integrated autocorrelation time, denoted with τint,

which, given a set of ordered variables {x1, x2, . . . xN} indexed by a time coordinate t is defined

as:

τint =
1

2

∞∑
t=1

Γ(t)

Γ(0)
=

1

2

∞∑
t=1

ρ(t), (1A.1)

where Γ(t) is the autocorrelation function of points at a distance t in the chain:

Γ(t) = Γ(−t) = ⟨(xi − x̄)(xi+t − x̄)⟩ ≈
1

N − t

N−t∑
i=1

(xi − x̄)(xi+t − x̄). (1A.2)

With this definition, in the case of large N , the true variance of the data is:

σ̃2 = 2τintσ
2, (1A.3)

this factor can be estimated numerically for a given Markov chain and used to correct the results

a posteriori. It is easy to see that if τint =
1
2
then the variance is unchanged, meaning there is

no autocorrelation effect, and this can happen only if Γ(t) = 0 for all t ̸= 0, i.e. all samples are

uncorrelated.

Unfortunately, on a finite sample of size N the ratio ρ(t) becomes noisy for large t, making

it hard to determine τint. However, the noise must sum to 0 in the large N limit, so that one
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can truncate the summation in Equation (1A.1) to a suitable window of sizeW . Following the

procedure in [55] the square of the deviations of ρ(t) can be computed approximately as:

⟨δρ(t)2⟩ ≈ 1

N

∞∑
k=1

[ρ(k + t) + ρ(k − t)− 2ρ(k)ρ(t)]2. (1A.4)

The terms in this equation all vanish for a sufficiently large value of k, which means one can

introduce a cut-off Λ, usually of order O(10− 100) and only sum for k = 1, . . . ,Λ. One can then

define the width of the summation window for τint to be first value of t where ρ(t) is smaller than

its fluctuations, i.e. where ρ(t) <
√
⟨δρ(t)2⟩. One can also define an approximate error formula

for the integrated autocorrelation time, which reads:

σ2(τint) ≈
2(2W + 1)

N
τ 2int. (1A.5)

Throughout this work, the autocorrelation of data computed on lattice gauge field configurations

has been estimated using this procedure.

1A.1.1 Statistical Blocking

A straightforward way to handle autocorrelated data is to use the method of Blocking [56].

It works by creating blocks of data of size B out of a data set by averaging B points along the

Markov chain, creating a new chain of length N/B. The block-averages are then used as the new

variables for the analysis, with the new data points being less autocorrelated than the unblocked

ones.

To estimate the optimal block sizeB one should calculate expectation values and their variance

for several increasing values of B, until the variance reaches a plateau. It can be shown that the

variance tends to the same value as the one corrected with the integrated autocorrelation time

from Equation (1A.3). In fact, blocking can be used as a cheap method to estimate τint.

1A.2 The Bootstrap Resampling Method

Resampling methods in statistics can be beneficial to correctly estimating the population mean

and its uncertainty by utilizing subsets of a given sample of data. In the case of LQCD, since
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lattice ensembles are usually small in size, resampling is beneficial to improve the precision of the

calculations.

A first estimate of the expectation value and its uncertainty, on a set of N uncorrelated

measurements, for an observable quantity O, is given by the mean and standard error of the mean:

Ô =
1

N

N∑
i=1

Oi, (1A.6)

σÔ =

√
⟨
(
Ô − ⟨O⟩

)2
⟩ =

√√√√ 1

N2

N∑
i,j=1

⟨(⟨Oi − ⟨O⟩) (⟨Oj − ⟨O⟩)⟩ =
σO√
N
,

where Oi are the measurements for the observable O.

The Bootstrap method [51] relies on building a set of Nb bootstrap samples by choosing N

points at random from the the original data Oi with repetition. It then uses the samples’ mean to

obtain an estimator of the population mean. In particular, given the mean of a bootstrap sample:

Ôb =
1

N

N∑
i=1

Or(N), (1A.7)

where r(N) signifies a random number drawn between 1 and N , then the population mean and

its variance are given by:

Õ =
1

Nb

Nb∑
b=1

Ôb σ̃2
Õ
=

1

Nb

Nb∑
b=1

(Ob − Õ)
2
. (1A.8)

The expectation value and the uncertainty of O are then given ⟨O⟩ = Õ and its associated

uncertainty is σ̃Õ. It should be noted that the results are not unbiased, in fact, Õ ̸= Ô and their

difference gives the order of the possible deviations of Õ from the true value ⟨O⟩.

The Bootstrap method is numerically inexpensive and can also be used for derived quantities

of the observable O. Furthermore, in the case of LQCD, if one computes multiple observables

on the same ensemble, the bootstrap method can be applied to estimate the population means of

composite quantities, as long as the random samples are drawn simultaneously, thus preserving

the correlation of the data.
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APPENDIX 1B

OVERVIEW OF TOPOLOGICAL EFFECTS IN LATTICE QCD

The QCD vacuum exhibits particular topological properties that related to important physical

phenomena [57, 58]. One important property is the topological charge, which can intuitively

be understood as the winding number of the quantum field. In the continuum theory, fields

with different topological charges are separated as there is no unitary transformation that can

connect them; we often refer to these as topological sectors. Instead, when QCD is discretized

on a lattice, the MCMC simulations have access to all sectors, thanks to non-zero instanton

modes [59], and, in fact, observables are only well defined if all the sectors are sampled correctly.

A side-effect of applying boundary periodic conditions to the gauge field is, however, that when

approaching the continuum limit, the topological sectors become increasingly separated, i.e. the

MCMC algorithms have lower probabilities of tunneling from one sector to another. This, in

practice, means that to achieve proper sampling of an observable requires longer runs the closer

we get to the continuum [60].

On the lattice, there are different ways to define the topological charge: one is fermionic and

is based on the Atiyah-Singer index theorem [61] and relates the charge to the distribution of the

spectrum of the Dirac operator [62]; in contrast, the other definition, which is the one we will

discuss now, only comes from gauge field effects. The two are identical in the continuum, and

purely topological observables, like the topological susceptibility, should be independent of the

definition used [63, 64].

The topological charge can be written as the the integral over all spacetime of the topological

charge density:

Q =

∫
d4xq(x), (1B.1)

where

q(x) =
1

32π2
Tr(Gµν(x)G̃

µν(x)). (1B.2)
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The term G̃µν
represents the dual of the gauge field tensor:

G̃µν(x) =
1

2
ϵµνρσGρσ(x), (1B.3)

with ϵµνρσ being the totally anti-symmetric Levi-Civita symbol. On the lattice, the topological

charge in Equation (1B.1) can be computed using a suitable discretized definition of the gauge

tensor. As we have seen in Section 1.2.2, this can be done using the Clover term, so the topological

charge becomes:

Q[U ] =
1

64π2

∑
n∈Λ

∑
µ<ν

ϵµνρσTr[G(clover)
µν (n)G(clover)

ρσ (n)]. (1B.4)

This definition is susceptible to short-distance fluctuations of the gauge field and is therefore

very noisy, in fact, it is divergent in the continuum. A tool to improve its determination is the

Gradient Flow, which is discussed more in detail in Appendix 1C, as it dampens the high-frequency

modes, only leaving the long-scale signal without needing any additional renormalization as the

topological charge is a purely gluonic observable.

A quantity of interest is the topological susceptibility χ, that is related to the second cumulant

of the distribution of the topological charge and is defined as:

χ =
1

a4|Λ|
⟨Q2⟩. (1B.5)

This quantity is crucial in understanding essential properties of instantons on the lattice and,

through the Witten-Veneziano formula [57], it can be shown to be proportional to the mass of the

η′ meson.
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APPENDIX 1C

THE GRADIENT FLOW AND SCALE SETTING

The Gradient Flow, orWilson Flow, is a method for studying non-perturbative effects of QCD, first

proposed by M. Lüscher in the context of trivializing maps [65], but later explored more in depths

in [54, 66] and following papers. It works by modifying the fields according to a gauge-covariant

“diffusion-like” flow equation which evolves them towards the stationary points of the action. For

SU(3) this equation reads:

∂tfBµ = DνGνµ, (1C.1)

where tf is the so-called flow-time, the parameter that controls the evolution, and Bµ(tf , x) is the

flowed version of the original gauge field with the initial condition at zero flow-time set to be:

Bµ|tf=0 = Aµ. The other terms in the equation are just the generalization to the Bµ field of the

covariant derivative and the field tensor:

Gµν = ∂µBν − ∂νBµ + [Bµ, Bν ], (1C.2)

Dµ = ∂µ + [Bµ, ·]. (1C.3)

From Equation (1C.1) we can see that the right-hand side is proportional to the gradient of the

action; hence the name. Its effect is intuitively that of moving the field Bµ along the steepest

descent path of the action. This, in turn, corresponds to a “Gaussian-like” smearing of the gauge

fields with a smearing root-mean-square radius of size

√
8tf .

On the lattice, one can rewrite the flow equations in terms of the field Vtf (x, µ) which is the

flow generalization of the link filed U(x, µ):

∂tfVtf (x, µ) = −g20[∂x,µSG(Vtf )]Vtf (x, µ), (1C.4)

where SG is the Wilson plaquette action, see Equation (1.23), computed with the Vtf (x, µ). This

equation can be integrated numerically on the lattice using Runge-Kutta Munthe-Kaas methods [67,

68].
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One crucial fact about the gradient flow is that the flowed gauge fields do not need any

renormalization; therefore, correlation functions containing them have a well-defined continuum

limit [66]. For example, in the case of the topological charge that we presented in Appendix 1B,

the gradient flow serves to dampen the high-frequency modes removing noise but leaving the

topological charge unaltered. It is, therefore, an advantageous method to accurately determine the

topological charge on the lattice. In fig. 1C.1, we show an example of the smearing effect given by

the gradient flow on the topological charge density. One can observe that the highly fluctuating

values of the density as tf increases are removed, leaving only the long-distance effects that are

the ones that truly contribute to the topological charge.

Figure 1C.1: Topological charge computed at fixed euclidean time on a pure gauge lattice of size

323 × 64 with spacing a = 0.06793 fm. The different figures represent different values of the flow

time with radii

√
8tf = 0, 0.14, 0.30, 0.43, 0.52, 0.60 fm. The visualization has been performed

using the software called “LatViz”, developed together with H.M. Vege interface based on the open

source visualization tool by LLNL VisIt [69].

The topological charge at

√
8tf = 0 fm (the non-flowed field configuration) is highly affected

by short-distance over the lattice sites. One can notice that the effect of the flow equation is to
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remove these fluctuations, that at

√
8tf = 0.60 fm are almost entirely gone. For larger smearing

radii, the emergence of well-separated topological sectors becomes visible.

1C.1 Scale Fixing with the Gradient Flow

In one of the first articles about the gradient flow, it was suggested that the method could be used

for scale setting in Lattice QCD [54]. In particular, this is done by considering the dimensionless

quantity t2f ⟨E⟩, in the region where

√
8tf is at a hadronic scale. In that case, the quantity has

a very weak dependence on the lattice spacing, and thus, it is, also considering that it can be

computed with high numerical precision on the lattice, suitable for scale setting. It was proposed

to consider the value t0, defined as the point where:

t20⟨E⟩ = 0.3 (1C.5)

as scale. In practice this means that all lattice observables are then expressed in terms of t0/a
2
,

while the value of t0 needs to be fixed using a physical observable, for example as done in [70],

where they find the value

√
t0 = 0.1464(18) fm. Conversely, given an ensemble and the physical

value of t0, one only needs to find the value of tf/a
2
where Equation (1C.5) is satisfied to find t0

and then obtain the lattice spacing a, see Figure 3.10 for example.
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CHAPTER 2

MACHINE LEARNING METHODS FOR HADRON CORRELATORS FROM LATTICE
QCD

Despite the great hardware, software and algorithmic developments, the computational cost

of a realistic lattice QCD calculation is still among the most demanding numerical calculations

performed regularly in High-Performance Computing (HPC) facilities around the world [1–3]. As

an example, four out of five of the largest awards of the 24th call of the Partnership for Advances

Computing in Europe in 2021 were for LQCD [4].

The majority of the time spent by a lattice QCD calculation is in the computation of the quark

propagator, which not only provides the building block for the determination of any fermionic

correlation function, but it is needed repeatedly during the Markov Chain Monte Carlo (MCMC)

used to generate the gauge ensemble with dynamical quarks, as discussed in Section 1.3. The

calculation of the quark propagator is achieved by inverting a very large sparse matrix representing

the lattice Dirac operator, see Section 1.4. The problem becomes a sparse linear system once we

fix the location of the source, however, it can still contain O(109) unknowns because the quark

propagator is effectively a vector of the size of the number of lattice sites times a factor 12 coming

from color and Dirac indices.

These types of linear systems are usually solved by adopting Krylov Subspace (KS) methods,

such as the Conjugate Gradient (CG) or its variations like the Biconjugate Gradient Stabilized

(BiCGSTAB) method[5]. However, due to the computational advance in recent years, calculations

started to approach the continuum limit or the physical value of the light quark masses, but

this leads to a tremendous increase in the solver iteration count [6]. Several preconditioners

can be used to speed-up these type of calculations such as even-odd preconditioning, domain-

decomposition [7] and deflation [8]. A successful way to precondition KS solvers is based on

several variants of so-called multigrid algorithms such as inexact deflation [9, 10], the Multigrid

Generalized Conjugate Residual (MG-GCR) [11] and multigrid approaches which are adaptive
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aggregation based such as the DD-αAMG [12].

Recently, some studies on how Machine Learning (ML) algorithms could be used to speed

up lattice calculations have been released. Since these methods have matured considerably over

the past decade, there is a lot of interest in understanding if and how they can be employed in

LQCD calculations. ML algorithms have already been applied in [13] to try to reconstruct the

dependence of more complicated observables on simpler ones, or, for example, in [14]. Other

studies have focused on so-called normalizing flows for generating configurations from direct

sampling [15, 16], attempting to find a replacement, full or partial, of the HMC using generative

ML models.

At the same time, there have been studies in Lattice QCD for methods of noise reduction [17],

mainly in the context of disconnected diagrams, such as the hopping parameter expansion tech-

nique, the truncated solver method and the truncated eigenmode acceleration. One of these,

the truncated solver method (TSM), relies on the rapid convergence of solvers to the solution

within very few iterations, with most of the time being spent afterwards in gaining only little

precision more. In more precise terms, the logarithm of the residue of the quark propagator linear

system has a roughly linear dependency on the number of iterations, as we will see in Section 2.1.

This well-known fact can be used to reduce the variance if one computes a set of N propagators

with stochastic sources on a gauge field configuration with very low precision, then on a subset

M ≪ N a high precision propagator is computed as well. The high precision data is then used to

compute the possible bias of the low precision estimates.

In this chapter, we propose a different strategy, in a similar spirit to the TSM: by taking

advantage of recent developments in Machine Learning algorithms, in particular in the field of

supervised learning, we apply them to the problem of speeding up the calculation of the hadron

correlation functions. While ultimately the goal is to accelerate the determination of the quark

propagator, in this work, we focus on derived quantities, hadron correlation functions and effective

masses to reduce the dimensionality of the ML problem. As a first step in using ML to determine

hadron correlators, we propose to combine the information contained in correlation functions
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determined with quark propagators calculated with different precisions from the linear system

solver. The analysis presented in this work shows that quark propagators calculated with sloppier

precision than the standard one contain enough information to let the ML algorithm reconstruct

the hadron correlators calculated with more precise quark propagators. To train the ML algorithm,

one makes use of the ensemble generated with the MCMC and subsets of it.

This chapter is organized as follows: in Section 2.1 we thoroughly introduce the problem with

some numerical lattice details and study the dependence on the solver precision and its impact

on two-point functions. In Section 2.2 we introduce a few supervised ML algorithms and discuss

their application to our calculation. In Section 2.3, we study the correlation of the data from our

ensembles and propose a tentative algorithm, while in Section 2.4 we will present the results of

the ML procedure. Finally, in Section 2.5 we summarize our conclusions.

2.1 Residue analysis of the BiCGSTAB Linear Solver

The convergence properties of the BiCGSTAB algorithm on a quark propagator problem are

non-trivial. In particular, there is no guarantee that the residue of the linear system as a function of

iteration counts is monotonically decreasing and, in fact, that is usually not the case. A description

of the algorithm can be found in Appendix 2B. In this section, we investigate the convergence of

the algorithm for quark propagator inversions for the LQCD ensembles we will use for our ML

procedure from the traditional perspective.

In this work, we consider QCD with Nf = 2 + 1 dynamical quark flavors. The theory

is regulated on a Euclidean lattice of spacing a with an Iwasaki gauge action [18] and a non-

perturbativeO(a) improved fermion action [19, 20] (clover fermions). The details of the ensembles

we have used can be found in [21–23] and for completeness we summarize them in Table 2.1. The

ensembles span a range of masses mπ = 400 − 700 MeV at a fixed lattice spacing (ensembles

M1,M2,M3), and three different lattice spacing while keeping the total volume and pion mass

approximately fixed (ensembles A1, A2,M1). It is conceivable that, in the range of masses and

lattice spacings we have investigated in this work, the results we obtain are largely independent of
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the fermion lattice action used. It would still be very interesting to test the algorithm we propose

with different types of lattice actions such as Ginsparg-Wilson fermions [24].

β κl κs L T a [fm] mπ [MeV ] N
M1 1.90 0.13700 0.1364 32 64 0.0907(13) 699.0(3) 399
M2 1.90 0.13727 0.1364 32 64 0.0907(13) 567.6(3) 400
M3 1.90 0.13754 0.1364 32 64 0.0907(13) 409.7(7) 450
A1 1.83 0.13825 0.1371 16 32 0.1095(25) 710(1) 800
A2 1.90 0.13700 0.1364 20 40 0.0936(33) 676.3(7) 790

Table 2.1: Ensembles from the PACS-CS collaboration [22], with clover fermion action. Physical

quantities (lattice spacing a and pion massesmπ) have been calculated for another work [23].

2.1.1 Krylov Space Solvers

To fix the notation, we briefly repeat some well-known facts about the determination of quark

propagators with Krylov space solvers. For completeness, a few additional details can be found in

Appendix 2A, while an exhaustive treatment of iterative methods for sparse linear systems can be

found in [25]. The quark propagator q(x) is obtained by solving the equation

Dq(x) = η(x) , (2.1)

where D represents the lattice Dirac operator of choice at non-zero mass and η(x) is the source

field, as explained in Section 1.4. In our case, the lattice operatorD is given by the non-perturbative

improved Wilson fermion operator. The equation satisfied by the quark propagator Equation (2.1)

is a very large and sparse linear system that can be solved by generating a sequence of solutions

qn of increasing precision. The accuracy of the solution after n iterations is measured by the norm

of the residue

rn = η −Dqn . (2.2)

In the following, when we refer generically to the norm, the Ln2 normed vector space and the

corresponding induced norm on the vector space of matrices are to be intended. Definitions and

selected properties of the norms used in this work can be found in Appendix 2A. As presented in
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Section 1.4.2, the iterations of the KS algorithms are terminated when the inequality

∥rn∥ < ϵ ∥η∥ , (2.3)

is satisfied and thus the quark propagator is obtained with accuracy ϵ; we will also refer this

parameter as stopping criterion and it is a crucial element in the discussion throughout this chapter.

2.1.2 BiCGSTAB Solver History

As an example of a Krylov space solver behavior for different accuracies, in the left plot of

Figure 2.1 we show the average time needed to compute the quark propagator as a function of

the stopping criterion for all the ensembles listed in Table 2.1. Calculations are usually run with

very small values of ϵ to ensure that the solver precision is always smaller than the statistical

uncertainty coming from the ensemble averages. However, we notice that reducing the precision

of the calculation from ϵ = 10−8
to the range ϵ = 10−1−10−3

would imply a significant reduction

in the overall computational cost, which is what we aim to use ML for.
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Figure 2.1: Left Plot: Average time to compute the quark propagator as a function of the stopping

criterion for all the ensembles (see Table 2.1). To make the comparison fair, all the timings have

been obtained using the same computational setup, i.e. the same number of nodes, cores per node

and geometry. The error bar represents the standard deviation of the timings of the configurations

in the ensemble. Right plot: Residuum as a function of the number of iterations for one sample

configuration from each ensemble. Results shown in both plots are obtained using a BiCGSTAB

algorithm.
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For completeness, in the right plot, we show the iterated residuum as a function of the number

of iterations for a representative gauge of all the ensembles listed in Table 2.1. It is clear to see that

the trajectory of the solution is not monotonic with the iteration count, meaning that different

local minima are explored by the solver, however, there is a general linear trend with the log of

the precision.

The main idea of this work is to try to reduce the computational cost of the linear system for

the quark propagator by using some information about the solver history on a subset of the gauge

ensemble and then using supervised ML methods to speedup the computations on the rest of the

ensemble. As a first try, we use numerical data for different stopping parameters ϵ as training and

prediction data sets. For example, using a precise measurement of the propagator (ϵ = 10−8
) on a

subset of the ensemble and a less precise one (ϵ = 10−1, 10−2, 10−3
) on the whole ensemble. This

would dramatically reduce the time required to compute observables.

2.2 Machine Learning Regression for Two-point Functions

The field of Supervised Machine Learning is based upon the idea that for an arbitrary class of

functions F = {f(x|θ) : θ ∈ Rl}, with f(x|θ) : Rn → Rm, parameterized by θ, and given a finite

set of pairs T = {xi, yi}Ni=1, one can find the best function f(x|θ) in the class that approximates

the probability distribution that generated the pairs in T . This might remind the reader of regular

fitting, and indeed supervised learning is a superset of fitting procedures. The generalization

comes from the possibility of using very generic function classes F which can be very useful in

cases where the function F (x) : Rn → Rm that governs a process of interest is unknown and

maybe hard or even impossible to define rigorously. In such cases, if a sample of input-output data

from such a function or process is available (this is called the training set), one can use supervised

ML to at least get an approximation of F (x) [26].

The procedure to obtain a valid approximation for F (x) is divided into two parts: the choice

of the class of function F or model, these are what are commonly known as ML methods or

algorithms, and the optimization of the parameters θ, known in the jargon as weights.
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The optimization is usually done with gradient descent or derived methods, mainly Stochastic

Gradient Descent (SDG) [26] and related algorithms such as Adam [27] or AdaGrad [28]. All these

optimization methods require a loss function to estimate the distance of the current approximation

candidate f(x|θ∗) from the known value for the training set. A simple choice is the squared error

loss, or L2-norm, L2 =
∑N

i (yi − f(xi|θ∗))2, but other loss functions can be defined.

While the choice of the minimization algorithm, its input and parameters can affect the end

results, the most important choice that impacts the model is the class of functions F . For example,

one can choose the set of linear functions from Rn → Rm and an appropriate number of coefficients

represented in θ. If the L2-norm is chosen while optimizing, then, in fact, the whole procedure is

the familiar case of linear regression. Other types of functions can be used and there is a very

active field of research in approximation theory to define the convergence properties of different

function classes.

2.2.1 Artificial Neural Networks

An Artificial Neural Network (ANN or simply NN) is a function or model composed of a series

of linear transformations alternated by non-linear operations. It has a set of unknown parameters,

the weights, that schematically link sets of nodes that make up what are called layers. A very

common subclass is that of feedforward NN, which means that layers are only connected in order,

with their output being the input of only the following layer. Among these, the most popular one

is the Multi-Layer Perceptron (MLP), which is NN made of a series of fully connected layers, see

Figure 2.2.

It has been proven that MLPs are universal approximants [29, 30], meaning that any function

can be approximated arbitrarily well with such NN, however, the number of layers and their sizes

are not determined uniquely, so no information is known exactly on how to find the optimal

approximant, just its existence.

The inner layers are called hidden because they do not represent any meaningful state on

their own and hence are difficult to access and investigate them. Each node in a layer is based
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Output LayerInput Layer Hidden Layers

Figure 2.2: Example structure of a Neural Network for regression. The size of the input and

output layers are fixed by the function that needs to be fit. The black lines represent the weights

connecting the different nodes.

on the perceptron model, schematically drawn in Figure 2.3 Each node takes N -input values

Figure 2.3: Neural Network unit used in this work. First a linear combination of the N inputs

xi with weights wi is summed to a bias b, then to the result t is passes to a non-linear activation

function, a sigmoid in this case.

{x1, . . . , xN} and models the final target y based on an N -sized vector of weights w and a bias b:

y = σ(b+
N∑
k=1

wixi), (2.4)

where the σ is the activation function, which is a non-linear function, some simple example of

which are the sigmoid:

σ(x) =
1

1 + e−x
, (2.5)

or the Rectified Linear Unit (ReLU):

σ(x) =


0 if x < 0

x if x ≥ 0.

(2.6)
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A layer is then composed of a set of such perceptrons and we can then formulate the problem

for a single layer in matrix notation:

y = σ(b+W · x), (2.7)

Now we can generalize the result to more layers. For example a 3-layer MLP would be:

f(x) = σ3(b3 +W23 · σ2(b2 +W12 · σ1(b1 +W01 · x))), (2.8)

which is now clearly a series of alternating linear and non-linear transformations on the input

vector x. Often, but in particular for the case of regression NN, the outermost function σ is taken

to be an identity.

The number of layers and their sizes are not fixed and have to be chosen wisely: these are

examples of what are called hyperparameters. Other empirical choices are, for example, the type

of activation function for each layer, the initial values for the weights and biases before the

minimization is run or the minimization algorithm and its parameters, see Appendix 2C.

To find the optimal weights and the biases of our NN we use the backpropagation algorithm,

which is nowadays the workhorse for fast learning in NNs. The backpropagation algorithm

became popular after the article by Rumelhart et al. [31], but it has its origin in the Master Thesis

results of S. Linnainmaa [32].

The backpropagation algorithm is the crucial element of all Gradient Descent methods as it

allows the calculation of the partial derivatives of the loss function of all the weight and biases

without having to store any data or having an explicit functional for the derivatives. It is one of

the most important examples of dynamic programming.

In general, the optimization of the parameters of a NN is a highly non-trivial task of convex

optimization. One of the main issues is the presence of several local minima of the loss function.

In practice, one can only test on some sample data whether the fitted parameters give a good

representation of the data or not. This is made even worse by the risk of over-fitting the model

to the training data, which is exacerbated by the usually very large number of parameters. To

mitigate this problem, often, a subset of the training data is not used for fitting the parameters
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but for validation or bias correction. Another way to mitigate over-fitting is by imposing some

constraints on the values of the parameters, by, for example, modifying the loss function, see

Appendix 2C.

2.2.2 Partitioning of the data

As previously stated, in this work, we want to train a NN to model the trajectory of the BiCGSTAB

solver from one or more low precisions to a high one. In order to do this, we compute the hadron

two-point functions C(t) on all the N configurations of each ensemble in Table 2.1. These

correlation functions are obtained from propagators that have been determined with four different

stopping criterion: ϵ = 10−1, 10−2, 10−3, 10−8
.

Out of the N configurations, we choose a fraction f = NL

N
that will be used for training our

ML model. We will call this partition the labeled fraction because for each configuration, we know

both the low precision value of the correlation function and the target value, ϵ = 10−8
that we

want to reproduce during the training.

The test set, from which the ML estimator for the correlator is computed, is chosen as the

remaining (1− f)N configurations of the ensemble. The data for the precise correlator (ϵ = 10−8
)

on this set is never used in the ML process. It is only used to compare the ML predictions with a

full-length traditional calculation and thus to test the efficiency of the model discussed.

The labeled configurations are further partitioned into two sets of size NT and NB . The first

are the ones used for training the NN model, while the second is used for bias correction, as done

for example in [13] and shown more in detail in Section 2.3.1. Figure 2.4 shows a simple diagram

of the data partitioning for clarity.

2.2.3 Single Point Correlator Models

The set of ML models considered for this study all focuses on finding relations between a hadronic

correlator C(t) at low precisions and the precise one. In what we will call Single Point Neural

Network models (SPNN), the relation is found for every source-sink separation time independently.
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Compute a precise correlator and 
a sloppy correlator on a fraction 
of the ensemble for training  and 
bias correction

Use only the information of
 the sloppy correlator to 
estimate the precise one

Total ensemble size

Bias correction set

Training Set

Expensive inversions

Cheap inversions

Figure 2.4: Simple diagram on how the data is partitioned. On the whole ensemble the “sloppy”

correlator CS(t) is computed from propagators with stopping criterion ϵ = 10−1, 10−2, 10−3
. On

just NL configurations the “precise” correlator CP (t) is computed with ϵ = 10−8
.

It effectively corresponds to training T different ML models, one for each value of t, for every

hadronic correlator. There is much freedom in the choice of the model, as one can choose

different input variables while keeping the target variable fixed. However, one has to consider

that increasing the dimensionality D of the problem can affect the convergence.

Output LayerInput Layer Hidden Layers

Figure 2.5: Schematic representation of a NN for the model with multiple ϵ, SPNN2. It is important

to note that all layers in this model are rather small.

Here is the list of single-point models used in this work:
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• SPNN2: a Neural Network using ϵ = 10−1, 10−2
as input and ϵ = 10−8

as target. This is

done independently for every source-sink separation time t, i.e. a neural network is created

and trained for every t.

• SPNN3: same as SPNN2 but using ϵ = 10−1, 10−2, 10−3
as input and ϵ = 10−8

as target.

• SPNN2t1/SPNN3t1: a Neural Network using ϵ = 10−1, 10−2
(and 10−3

) at time t and t± 1

as input and ϵ = 10−8
as target. The difference with SPNN2/SPNN3 is that the input given

to the NN also contains data from neighboring source-sink separation times t.

• SPNN2t2/SPNN3t2: a Neural Network using ϵ = 10−1, 10−2
(and 10−3

) at time t, t± 1 and

t± 2, as input and ϵ = 10−8
as target.

It is clear that the dimensionality of each model space is then D = (2n+ 1)Nϵ, where Nϵ is the

number of stopping parameters used as input and n is the number of neighboring time points

used. In Figure 2.5 we show the example structure of the NN corresponding to the SPNN3 model.

To fix the size of the hidden layers, we followed a semi-empirical method that gradually reduces

the size of the network until its performance decays. More details are in Appendix 2C.

2.2.4 Global Correlator Models

A more radical approach is to create a model to directly relate a low precision correlator,

considered as a vector of size T , or T ×Nϵ, if multiple stopping parameter data is used as input

at once, to a high precision one. Clearly, the dimensionality of the problem is much larger than

the ones in the previous section, as now the ML model represents a function f : RT×Nϵ → RT .

Depending on the maximum ϵ used, we name these models GNN2 and GNN3 in analogy with

the single point models. In Figure 2.6 we show the example of a NN corresponding to the GNN2

model. The size of the hidden layers has been set following the procedure in Appendix 2C.
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Output LayerInput Layer Hidden Layers

Figure 2.6: Schematic representation of a NN for the global correlator model. This particular NN

corresponds to the GNN2 model. The input layer is of size T ×Nϵ while the output layer is of size

T . The size and number of intermediate hidden layers are parameters of the model differ from the

ones in the picture.

2.3 Accelerating Correlator Calculations with ML

The first consideration to ensure the feasibility of our ML procedure is to check if there is some

degree of correlation between the hadron correlators at different precisions. For notation’s sake,

given a gauge configuration Ui and a propagator evaluated with accuracy ϵ = 10−n, we label

the correlator as as Cn(t;Ui) = C
(i)
n (t). The average over the ensemble is denoted as simply

Cn(t) =
1
N

∑N
i=1C

(i)
n (t).

To determine the correlation among the 2-point functions evaluated at different precisions we

define the usual sample correlation coefficient as:

rmn =

∑N
i=1

(
C

(i)
m (t)− Cm(t)

)(
C

(i)
n (t)− Cn(t)

)
√∑N

i=1

(
C

(i)
m (t)− Cm(t)

)2√∑N
i=1

(
C

(i)
n (t)− Cn(t)

)2 . (2.9)

In the top plot of Figure 2.7 we show a heat map of r28 for the ensembleM2 as a function of the

Euclidean time separation between the two interpolating operators t/a for selected hadrons. In

the bottom plots, we plot the actual value of C2(t;Ui) against C8(t;Ui) for two different values of

t for the pion: a small value, where the excited states contribution should still be large (bottom

left), and an asymptotic one where the ground state should be dominant (bottom right). We
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clearly observe a high level of correlation for most of the 2-point functions. The correlation

though, decreases towards the center of the lattice, where the signal-to-noise decreases. One could

phenomenologically conclude that one starts to lose the signal when the accurate solution of the

quark propagator is statistically uncorrelated to the quark propagator obtained during the first

steps of the iterations. If we consider the iterative nature of the KS solvers, somehow, the loss of

correlation further away from the source location is expected. The higher the accuracy requested,

the higher the number of iterations and the larger the distance from the source where the solution

is accurate. Nevertheless, the clear correlation, which to first approximation is linear even in the

large t case, can be exploited to extract information about the precise correlation starting from

the sloppy one.
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Figure 2.7: Top: The correlation coefficient between the correlator calculated at ϵ = 10−2
and

ϵ = 10−8
for various hadrons as a function of the source-sink separation time. Bottom: the proton

correlator at two precisions (ϵ = 10−2, 10−8
) plotted against each other for two different values of

t.

In Figure 2.8, we show all the data that is used as input for our calculations, both in the form
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of the correlator and as the effective mass plot, where central values and error bars are calculated

using the information of all configurations of the ensemble utilizing the bootstrap method, see

Appendix 1A.2. Our ML procedure intuitively has the aim of finding a mapping from lower ϵ

data to the high precision one (the red data in the plots) at the configuration level, exploiting the

correlation between different precisions.

One thing to notice is that the data for ϵ = 10−3
is overlapping very closely with the precise

results of ϵ = 10−8
. This is the reason why it has been decided to consider the pairs of models

SPNN2, SPNN3 and GNN2, GNN3 to check if the results are significantly different when the

ϵ = 10−3
data is included. One has to consider, however, that there is a computational cost

difference between ϵ = 10−3
and ϵ = 10−2

, so this, as we will see in Section 2.4.1, needs to be

accounted for when comparing the results.
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Figure 2.8: Top row: Two-point correlator for the pion (left) and proton (right). Bottom row:

effective mass for the pion (left) and proton (right). Different data series represent the varying

stopping criterion ϵ. All data are for the ensembleM2.
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2.3.1 Bias Correcting Procedure

Throughout this analysis, we employed a technique to remove the bias of the high precision

ML estimates as outlined in [33], by considering the chance that the low-precision data for an

observable OLP
and the high-precision OHP

one could have different expectation values. Calling

O∗HP
the high precision estimate from the ML model using the OLP

, one then considers the

expectation value for OHP
:

⟨OHP ⟩ = ⟨O∗HP ⟩+ ⟨OHP −OLP ⟩. (2.10)

. The second term is what we call the bias correcting term. It can be estimated with high precision

from a small sample of data when the fluctuations of OHP
and OLP

are highly correlated, which

we assume is the case for the problem we have at hand because the underlying gauge dynamics

affect the correlator results at different precisions in a similar way. The unbiased estimator for the

observable then becomes:

ŌHP =
1

N −NL

N−NL∑
i=0

O∗HP
i +

1

NB

NB∑
j=1

(OHP
j −OLP

j ). (2.11)

It is important to note that two sums run on different partitions of the ensemble data, as shown

in Figure 2.4. The first one is for the N − NL unlabeled configurations on which only the low

precision data is known, and the value of O∗HP
is calculated using the ML model. The second

sum runs on the bias correction subset of the labeled fraction of the ensemble, for which both

OHP
and OLP

are known.

This bias correcting procedure is the same as in the TSM method of [17], but here it is done at

the ensemble level and not for a single configuration.

2.3.2 Error determination

A popular method to improve the statistical analysis of lattice QCD data is the bootstrap

resampling method [34]. Since, in this work, we present both the results coming from both

a “traditional”, or “fully precise”, calculation and ones coming from a ML-aided method, it is

important to specify how the bootstrapping of data is performed in the two cases.
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The data of the traditional calculation come from bootstrapping the results of the correlator

C(t) from each configuration. As usual, in order to preserve the correlations between the data, one

needs to apply the same sampling to all values of t. Throughout this work, we used Nboot = 1000

samples of size N (the number of configurations in the ensemble) for this case. The values for the

variance of all the expectation values presented come from the variance of the bootstrap sample

averages. More details are found in Appendix 1A.2

The determination of the uncertainty coming from the ML procedure is more involved. Cru-

cially one need not mix the labeled data with the unlabeled data. Our first step was then to create

this partition, even though in an actual application of this method, this would not be necessary as

the precise calculation data would not be available for all configurations. Each subset of the data

is then bootstrapped independently, but within the same partition, all the data for different the

precisions, including the precise one, are sampled using the same random draws for the bootstrap,

which are also maintained across different values of t, to preserve the correlations between the

data. The bootstrap samples for the labeled data are then used to train Nboot neural networks (all

with the same structure, obviously) and to calculate the bias correcting term. To each of these NN

a bootstrap sample of unlabeled data is assigned and the ML estimator for each NN is computed,

so the sample expectation value of an observable is then is the average of the bias-corrected NN

predictions on the sampled variables. Finally, as is standard for the bootstrap method, the final

estimator and its variance are the average of the sample expectation values and their variance

respectively.

2.4 Numerical Results

We tested all of our models on the ensembles from the PACS-CS collaboration presented in

Table 2.1 to understand the feasibility of our ML procedure for hadron correlators. Each model

was trained using bootstrap, as presented in Appendix 1A.2, so that the results presented below

are all bootstrap averages of different NN.
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2.4.1 Performance Metrics

To get a quantitative estimate of the performance of the algorithms, we define a computational-

time gain factor ΓML
for every model. It depends on the fraction f of the ensemble used for

training the NN and on the minimum ϵ used as input for the model. If we denote with tP the total

time that one would need to determine the quark propagator with the highest accuracy, ϵ = 10−8

(the traditional calculation), the relative time gain factor is

ΓML(f) =
tϵmin

tP
(1− f) + f . (2.12)

This is the sum of the relative total time required to obtain the correlator with the highest low

precision ϵmin, either 10
−2

or 10−3
depending on the model, on the N −NT configurations where

only the low precision is needed,
tϵmin

tP
(1 − f), added to the training fraction f itself. ΓML

is

not a time but rather a ratio of times representing a gain; it is bounded by 1, when the time to

compute the low precision correlator tϵ is equal to the precise time tp or when f = 1, but since in

general tϵ ≤ tp, then ΓML < 1. The smaller ΓML
, the larger the computational gain. In computing

Γ(f) we neglected the time spent for training the NN, which is negligible when compared to the

propagator calculations: it is of the order of ≈ 10 minutes on a regular laptop.

In order to assess the quality of the results, we computed three quantities for each model:

• the ratio of the variances
σ2
ML

σ2
E

between the ML results and the high precision ones

• the compatibility of the results
|⟨O⟩ML−⟨O⟩E |√

σ2
ML+σ

2
E

• the algorithmic efficiency, what we define as AE(f) = 1
ΓML(f)

σ2
E

σ2
ML

. This combines the time

gain factor and the loss of precision in the variance. The higher this quantity is, the more

efficient it is to use the ML algorithm as opposed to perform a traditional calculation.

These have been computed for multiple observables, namely for the correlator C(t1) at a fixed

small euclidean time t1 ≈ NT/10, the correlator at a fixed asymptotic time C(t2) ≈ NT/3 and for

the effective mass calculated using a cosh fit in the case of mesons and a constant fit for baryons.
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2.4.2 Single Point Models

In the following pages, we show the results for the variance ratio, the compatibility of the results

and the algorithmic efficiency for all the ML models we presented for both the pion and proton

data on the ensembleM2. There are three plots for each quantity as it is measured on t1, t2 and for

the effective mass. For clarity, with “fully precise” (FP) results, we mean the observables computed

over all configurations of the ensemble with a high precision propagator.

The first observation to make is that all single-point models behave very similarly. The

discrepancy between the SPNN3 class of models and the SPNN2 class is more evident, while

increasing the number of time points in the model, so going from SPNN2 to SPNN2t1 and SPNN2t2

or the equivalents for SPNN3, does improve the results but not as much as increasing the number

of precisions used in the model. This is very clear at large t and for the effective mass. There

appears to be a larger gain in adding time points to the SPNN2 model than in the SPNN3 model.

One thing that is apparent from Figure 2.9 is that the ML results are always compatible with

the FP results, with compatibility consistently less than 0.8, so the central value obtained from

ML is always well within 1σ of the precise one.

A more interesting observation can come from looking at the variance ratio, Figure 2.10: we

observe the variance for single points being always very close to the FP for sufficiently large f ,

but it is much higher for the effective mass. The fact that for low f the variance ratio is large

is indicative of the inability of the ML models to capture the relation between the data fully. At

large f , one would expect the variance ratio to rise, as less information can be extracted from

the data and the effect of increasing f only results in reducing the sample size. We observe this

behavior clearly for the pion data at t1, where in fact, we expect the convergence of the solver to

be extremely fast as it is close to the source. At the same time, for other quantities and for the

proton, the effect is small, but however the variance ratio seem to plateau on a fixed value.
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Figure 2.9: Compatibility between the ML results, using SPNN methods, and the fully precise

results for the ensembleM2 as a function of the training fraction. The top row is the correlator at

time t1 = T/10, the middle row is the correlator at time t2 = T/3 and the lower row is the results

of a constant fit for the effective mass.
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Figure 2.10: Variance ratio between the ML results, using SPNN methods, and the fully precise

results for the ensembleM2 as a function of the training fraction. The top row is the correlator at

time t1 = T/10, the middle row is the correlator at time t2 = T/3 and the lower row is the results

of a constant fit for the effective mass.
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Figure 2.11: Algorithmic efficiency of the ML results, using SPNN methods, and the fully precise

results for the ensembleM2 as a function of the training fraction. The top row is the correlator at

time t1 = T/10, the middle row is the correlator at time t2 = T/3 and the lower row is the results

of a constant fit for the effective mass.
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When looking at Figure 2.11, the AE, however, it is clear that SPNN2 models lead to better

efficiency, as their Γ, the time gain factor, is much smaller because they use propagators only up to

ϵ = 10−2
which are cheaper. The AE is also an effective measure to discern the optimal training

fraction; it is clear that larger training fractions do improve the variance slightly but come at a

higher computational cost. From our data, one can infer that for the pion, the optimal range for f

is somewhere in the interval 0.10− 0.25, while for the proton, a larger training fraction is needed,

in the range 0.15− 0.30. It is also interesting to see that for t2 and for the effective mass of the

proton, the AE is higher for SPNN3 than for SPNN2 and that the AE also is smaller than 1 for

some combinations of model and f . This could indicate that the relation in the region where the

signal-to-noise starts to degrade, one is forced to use higher precision solvers.

In general, we find that there are wide ranges of f where the algorithmic efficiency is larger

than 1, meaning that the ML learning method is an effective way to speed up the calculation of

hadron two-point correlators and the effective mass, with the best case being the pion for which a

computational gain of more than a factor 2 can be consistently gained.

There are, however, some critical challenges to this ML approach. The first is the wild

fluctuations of the results shown in the figures above. The ML training procedure works well on

average, but it seems to fail catastrophically for some setups, for example, one can look at the

proton variance ratio for f = 0.10 for t2 in Figure 2.10. For all SPNN2 and SPNN3 models, there

is a sharp spike, also present moderately at t1 but not for the effective mass. This could be due

to the sample of data used for training since it is present irrespective of the model chosen. One

possible source of the issue can be hypothesized by the compatibility, which for the same point is

strikingly low. This means that the ML model is fully capturing the relation between the low and

high precision data, but it is failing to reproduce its correct distribution; hence this could be a

case of over-fitting. However, given the small sample size and the small size of the ensemble in

general, this can be a hard problem to overcome.

The second issue comes from the difference in the variance ratio of the single point of the
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correlator C(t1) and C(t2) and the effective mass. For the SPNN models, the variance is always

much larger for the effective mass than it is for the correlator for sufficiently large f , where there

the ML models have converged. This potentially indicates a loss of correlation between the data

at different t in the final ML results, which is problematic when, for example, performing fits

to the data like in the case of the effective mass. This is naturally given by the fact that we are

training independent models for each value of t, but while the input data is prepared in such a

way that correlations between the data are preserved, in practice, the bootstrap samples used

for training at different values of t all resample the data with the same random sequence, the

output data depends on the training and the inner workings of the NN. This makes it so that the

predicted values of the correlator coming from the ML model on a single configuration might be

decorrelated at different t. We can see, however, that this effect is mitigated by adding the data for

more values of t as input to the NN, which is the reason why SPNN2t1 and SPNN2t2 have better

performance than SPNN2, and the same for the SPNN3 class. Adding the additional t increases

the information about the time correlation in the NN, but from our results we can conclude that

this is not enough to estimatemeff correctly, for example.

In Figure 2.12 we show the results on different ensembles for the SPNN3t2 model, which is

the one that uses the most data and, in general, performs best, even though it has a lower time

gain factor than the SPNN2 models. We observe no significative difference in behavior as masses,

volumes and lattice spacings are changed, which is a good indication that this ML procedure can

be applied safely for a wide range of physical parameters for the lattice gauge field ensembles.

In general, the SPNN models are an effective method for reconstructing the hadron correlators

and their distribution from low precision data. However, there are concerns that should be

addressed for they practical use for calculations of secondary quantities like the effective mass.
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Figure 2.12: Variance Ratio (top), Compatibility (middle) and Algorithmic efficiency (bottom) of

the ML effective mass results, using the SPNN3t2 method, and the fully precise results for the

ensembles of Table 2.1 as a function of the training fraction.
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2.4.3 Global Network Models

The global network models are clearly much more complicated to train than the single-point

networks. For a start, their input and output layers are of the order of the number of lattice sites in

the temporal dimension, but for ML models, this is not an unprecedented size. What is potentially

problematic is the nature of the data itself, in particular, the exponential decay of the correlator as

t increases: the data spans several orders of magnitude and can, in exceptional cases, be negative,

which prevents a logarithmic treatment of the data. As explained in Appendix 2C, the way to solve

the issue is to scale all the data at a given time slice to have unit variance and zero mean. While

this procedure has no consequence in the SPNN case, in GNN models, this effectively means that

the network is only left to learn the correlations between the data and not the general behavior of

the function. In the following figures, we show the results for the effective mass from GNN3 on

all ensembles; the results for GNN2 are very similar, so they have been omitted for clarity of the

figures.

The most striking difference between SPNN and GNN models is the inversion of the roles of

the variance and of the compatibility. The results have, in fact, a very small variance ratio when

compared to the fully precise calculation but end up being a few σ away from the true results.

The low variance is a clear sign of the network’s inability to fully capture the distribution of the

correlator at every point t, while the low compatibility of the results implies that also the central

value of the distribution is incorrect, at least in the region where the effective mass fit is performed.

This also points to another problem coming from the scaling of the data: GNN models in no way

can distinguish points, in the case of the proton, where the signal-to-noise ratio is large (small t)

or small (t ≈ T/2). So the effectiveness of the training is significantly reduced. This is, however,

not an exhaustive explanation for the effect as the pion is also affected.

An apparent limitation of the GNN models is the extreme fluctuations of the results, especially

of the compatibility. From the bottom two panels of Figure 2.13, we observe that, for example, the

compatibility of themeff for the pion on the A2 ensemble oscillates from ≈ 7 to almost 0, when

changing f from 0.1 to 0.2. This is a clear indication of the instability of the method.
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One last consideration to make is that the GNN does give a small variance for the effective

mass, as opposed to the SPNN models, implying that the correlations between different t are

indeed preserved, although around the wrong central value and with a too small variance.

Overall, GNNmodels do not seem suitable to the problem at hand, as they fail at reconstructing

the hadron correlator distribution properly.
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Figure 2.13: Variance Ratio (top) and Compatibility (bottom) of the ML effective mass results,

using the GNN3 method, and the fully precise results for the ensembles of Table 2.1 as a function

of the training fraction.
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2.5 Outlook

Currently, the feasibility of this ML procedure is being studied. Some preliminary results

seem encouraging, however, there is the question of how reliable the proposed algorithm is. We

believe that there is certainly some information to be extracted from the solver history in the

determination of quark propagators and this can be used to speed up the calculation. What we

have found is that applying ML to derived quantities like the two-point correlation function or

the effective mass is not sufficient to reach a degree of confidence in the results that is satisfactory

for us. This is especially true as, in practice, there is always the possibility of performing the fully

precise calculation, which is “only” more expensive numerically, but certainly more stable and

reliable. However, if we want to adopt this ML routine, we would have to be confident that the

computational gain comes at no expense of the final precision of our results.

One possible way forward would be to test the limits of validity of this ML procedure further,

i.e. going to larger volumes or to smaller pion masses. In those ranges, the numerical cost increases

dramatically, which might make the algorithmic efficiency steadily large. This would effectively

mean that the time that is saved from calculating only low precision propagators could be spent

on sampling more sources on the same gauge field.

This last point also suggests another possible improvement for our derived quantities approach,

which is to use multiple stochastic sources per configuration and perform the ML training on the

average of those or us them to effectively enlarge the training set size. However, this would shift

the usefulness of the algorithm towards the possibility of only being applied for relatively simple

derived quantities, as most of the information on the single linear system solve would be averaged

out. This approach would then effectively be a variation of the TSM.

A more interesting development would probably come from accessing the propagator directly

during the iterative solver and training a model on the full quark propagator as opposed to the

correlator. However, this is very hard to implement in practice for two reasons. The first is that

the current LQCD software that computes propagators is highly optimized (mostly GPU) code,

which makes it hard to modify efficiently. The second hurdle to overcome would be the large

76



size of the network needed for training, as the quark propagator is a very large object in terms of

numerical size (it has a size proportional to the lattice size), which would make the training of

such model very expensive and challenging.

One last attempt would also be to try to apply different ML strategies, like analytic continuation

or unsupervised learning, but those would have to be radically different approaches from what

we have presented.

Nevertheless, utilizing the solver trajectory to gain information on the quark propagator and

speed up its calculation is something that should be explored further, not just for lattice QCD

applications. The potential impact of this procedure to compute hadronic observables could also

possibly be adapted to the speed of the calculation for pseudo-fermions in the Markov Chain

Monte Carlo algorithms and, more in general, it could enable the calculations on large lattices,

where the Dirac operator is prohibitively large for current computing architectures.
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APPENDIX 2A

LINEAR ALGEBRA CONVENTIONS AND DEFINITIONS

Most of the conventions regarding linear algebra are taken from [25]. Here we report them for

clarity and to fix the notation.

2A.1 Conventions on Norms

We consider a vector space V over the complex field C endowed with an inner product (·, ·)

satisfying the properties of positivity, linearity and Hermitian symmetry. The norm on any

element of V is an application from the vector space to the real fieldR satisfying the properties of

positivity, homogeneity and the triangle inequality. Given v ∈ V examples of norms on C
n
are

||v||∞ = max
i∈[1:n]

|vi| , (2A.1)

||v||p =

[
n∑
i=1

|vi|p
]1/p

, p ≥ 1 . (2A.2)

The corresponding vector spaces are denoted respectively as Ln∞ and Lnp . In the p = 2 case the

vector space Ln2 is endowed with an inner product and the Euclidean norm is defined to be

||v||2 =
√

(v, v). (2A.3)

We consider now a vector spaceMn of n× n matrices. Also in this case a matrix norm can be

defined satisfying the usual properties and additionally the property of submultiplicativity, i.e.

||AB|| ≤ ||A|| ||B|| , ∀A,B ∈Mn. A matrix norm can be induced by a vector norm defined on

C
n
as follows

||A|| ≡ max
||v||=1

||Av|| , (2A.4)

where it should be clear when we talk of a matrix norm or vector norm. The matrix norm induced

by the norm on Ln2 is related to the spectral radius

ρ(A) ≡ max {|λ|, λ ev. of A } , (2A.5)
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as follows

||A||2 =
√
ρ(A†A) . (2A.6)

2A.2 Preconditioned Krylov space solver

Krylov-space iterative solvers are based on the idea of constructing more and more accurate

solutions from the complex linear space defined by a Krylov sub-space. A Krylov space of

dimension n is defined by

Kn(A, η) ≡ span

{
η,Dη, . . . , Dn−1η

}
. (2A.7)

Many algorithms use the Krylov sub-space to generate the proper affine vector space where to

search for the solution of the iterative problem.

For simplicity, we consider here the operator Q2 = D†D, real symmetric and positive definite,

since this is the form of the operator most often used in LQCD calculations. We assume here

that in a finite volume v and at finite lattice spacing a, the lattice Dirac operator is a sparse large

N ×N matrix. We define the Q2
-norm as

||v||Q2 =
√
(v,Q2v) . (2A.8)

The CG algorithm is an iterative procedure that aims to find an approximate solution after n

iterations, ψn ∈ Kn(D, η) minimizing the error

||en||Q2 = ||S − ψn||Q2 = ||DS −Dψn||2 , (2A.9)

at step n. The rate of convergence of the CG depends on the spectrum of the lattice Dirac operator.

If we make the assumption that all eigenvalues λ are well separated by the origin, and we only

know the condition number κ(D):

κ(D) = ∥D∥ ·
∥∥D−1

∥∥ =

√
λmax(D†D)

λmin(D†D)
, (2A.10)

then the Q2
-norm of the error after n iterations satisfies

||en||Q2

||e0||Q2

≤ 2

(√
κ(D)− 1√
κ(D) + 1

)n

. (2A.11)
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This result guarantees that, barring too large values of κ(D), the CG converges to a given accuracy

ϵ with O(
√
k) iterations.
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APPENDIX 2B

THE CONJUGATE GRADIENT AND BICGSTAB ALGORITHMS

Since the analysis presented in this chapter focused on applications to the BiCGSTAB algorithm,

we present the pseudo-code for both the simpler Conjugate Gradient algorithm and the BiCGSTAB.

2B.1 The Conjugate Gradient Method

Given a linear system Ax = b and an initial guess vector x0 and a stopping parameter ϵ the

algorithm proceeds as follows [25]:

Algorithm 1 Conjugate Gradient algorithm

r0 ← b−Ax0

k ← 0
while rk > ϵ do

αk ←
rTkrk

pT
kApk

xk+1 ← xk + αkpk
rk+1 ← rk − αkApk

βk ←
rTk+1rk+1

rTkrk

pk+1 ← rk+1 + βkpk
k ← k + 1

end while

The CG algorithm only requires the direct application of the linear operator A and two

temporary vectors rk and pk. By analysis, once can deduct that rk and pk span the same Krylov

subspace and form two orthogonal basis, one with respect to the inner product, the other with

respect to the inner product induced by A. The vectors xk represent the projection of the real

solution x onto the Krylov subspace.

2B.2 The BiCGSTAB Algorithm

The BiConjugate Gradient Stabilized method was first introduced by H. A. van der Vorst [5] in

1992 and, as its predecessor BiCG, relies on two vectors, instead of one in the CG, two construct the

Krylov subspace which result in smoother and faster convergence properties. The generalization
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to the case of a complex linear operator, which is what is needed for the Dirac operator in LQCD,

was first published by M. Gutknecht [35] and reads:

Algorithm 2 BiConjugate Gradient Stabilized algorithm

r0 ← b−Ax0

s0 ← r0
y0 ← r0
δ0 ← y†

0r0

ϕ0 ← y†
0As0
δ0

k ← 0
while rk > ϵ do

ωk ← 1/ϕk
wk+1 ← rk − ωkAsk

χk ← (Awk+1)
†wk+1

||Awk+1||2

rk+1 ← wk+1 − χkAwk+1

xk+1 ← xk + ωksk + χkwk+1

δk+1 ← y†
0rk+1

ψk+1 ← −ωkδk+1

χkδk

sk+1 ← rk+1 − ψk+1(sk − χkAsk)

ϕk+1 ← y†
0Ask+1

δk+1

k ← k + 1
end while

In this algorithm, there are three auxiliary vectors needed for the iterations (wk, rk and sk)

and the stabilizing vector y0. Also, this algorithm only requires the direct application of the linear

operator.
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APPENDIX 2C

NEURAL NETWORK PARAMETERS IN DETAIL

When dealing with ML problems, and NN in particular, there are a lot of non-physical parameters

and choices involved in the training. We briefly mentioned some of them in Section 2.2; here we

present the choices for the values of hyper-parameters for reproducibility. We also mention that all

models have been trained using the scikit-learn [36] package from scipy [37], in python which

is the de facto standard language for ML, using the Multi-Layer Perceptron Regressor method.

Starting Values When training a NN one can choose a starting point for the optimization

algorithm. In practice, this is equivalent to setting starting values for all the weights and biases of

the network. We have chosen to set them with a random uniform distribution of unit variance,

following [38]. This is the most common choice and the default behavior in scikit-learn.

Over-fitting and Cross Validation In order to prevent over-fitting, a standard L2-norm regu-

lator has been used. This has the effect of penalizing networks with too large weights or biases,

which can result from over-fitting, by adding a term to the loss function that is the L2-norm of all

the weights and biases.

Cross-validation is a common technique in ML training to lessen the bias of the model with

respect to the training data sample. It acts by reserving a subsample of the training dataset on

which the model is not fit, but it is instead tested during training. This is very effective a reducing

over-fitting, especially when the sample dataset size is small. The cross-validation sample was set

to 10% of the training data.

Choice of the Optimizer There are several possible optimizers for training a ML model that

are readily available to use in most frameworks. The main difference between them is the speed

and the ability to distinguish local minima from the global minimum of the parameter space. The

optimizer we used in this work is the Stochastic Gradient Descent algorithm (SDG).
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Choice of the Activation Function The choice of the activation function, as for the optimizer,

can be easily made in most ML frameworks like scikit-learn as they are readily available. The

sigmoid is a very well-studied activation function, but it is rather expensive to compute as it

requires exponentiation. A simpler function is the Rectified Linear Unit (ReLU), see Equation (2.6),

which requires just an if statement, so it is much cheaper than the sigmoid. We chose the

ReLU both for performance and because it more easily captures the chance of two nodes being

completely uncorrelated, i.e. the weight between them is 0, while the sigmoid always has a

non-zero contribution.

Input Scaling To prevent numerical issues in the SDG minimizer, all the data that is used

in the NN should have roughly the same magnitude and variance. We scaled all the data at

every source-sink separation time to have zero mean and unit variance. This is a rather standard

procedure and guarantees that all weights, biases and input data have the same magnitude. This is

especially important in our case as the correlator data is exponentially decreasing with increasing

t, meaning that the input to the NN would be extremely small compared to the biases and weights,

which would make training almost impossible.

Number and Sizes of Hidden Layers One of the most important choices to make when dealing

with NN models is the structure of the NN itself. In order to fix the appropriate size of the layers

of the network, we performed a semi-quantitative analysis of the results for varying sizes of the

layers. We fixed the maximum number of layers to 3 and the sizes of the layers in the range from

1000 to 10. We then started from the largest network and used the SPNN3t2 model for the single

point network and the GNN3 for the global one (they have the largest input layer size, all the

models in the two classes have the same output layer size). By decreasing the sizes of the layers

gradually, we found the point where results started to diverge significantly, meaning that the

network became unable to represent the relation between the data properly. The final layer sizes

were fixed to be at least 1.5 times larger than the found point. Note that the sizes of the layers

were allowed to be different between the same network, in particular, the last hidden layer was
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kept smaller than the first one or two.

The final sizes of the hidden layers of the NN that we used are (150, 150, 100) for the single

point models and (600, 600, 200) for the global network models. It should be noted that during

training, some of the NN did not converge, i.e. their loss function was never smaller than the

predefined criterion, which we took as default, of 10−4
. This happened only for values of t ≈ T/2,

where the signal is weaker. However, we did not see any impact on the final results because of the

bootstrap procedure we used.
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CHAPTER 3

FIRST RESULTS OF HADRON SPECTROSCOPYWITH STABILIZEDWILSON
FERMIONS

Modern Lattice QCD calculations require ever-improving procedures and techniques for the

generation of gauge field ensembles. In this chapter, we present a new effort in this direction

started by the OPEN LATtice Initiative.

As was briefly discussed in Section 1.4, Wilson-Clover fermions (WCF) [1] are a very popular

choice in LQCD among other discretizations because of their straightforward interpretation and

the very limited restrictions they pose on possible observables. This also leads to them being

among the simplest action to implement numerically and analyze. The discretization of regular

Wilson fermions is of order O(a), but this can be rigorously improved to higher order, as, for

example, through the clover term if the coefficient cSW is determined non-perturbatively. Thus

WCF over the years enabled several precision calculations for a variety of physical observables, for

example, several quantities that are used in the biyearly Flavor Lattice Averaging Group (FLAG)

report [2], which summarizes the most important results from LQCD.

There are, however, some limitations on the use of Wilson-Clover fermions. One of the most

striking is the breaking of chiral symmetry, which in the context of gauge field generation has

the impact of allowing the Dirac operator to take arbitrarily small values, especially in the case

of small quark masses and coarse lattice spacing, an effect that grows worse with the larger

lattice volumes. This, in turn, means that to generate ensembles at low pion masses, one needs to

have very fine lattice spacings, but as we discussed in Section 1.4, small lattice spacings lead to

topological freezing and critical slowing down in the MCMC. This effectively poses some bounds

on the parameter space, in terms of lattice spacing, volume and quark mass, where simulations

can be performed successfully. One should, however, note that these limits are however very

similar for other lattice discretizations.

In recent years there has been a growing interest in master-field simulations [3], which by
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definition require very large volume simulations. This leads to an effort to improve the volume

limitations ofWilson-Clover fermions by introducing a set of techniques for numerical stabilization

and a new definition of the fermion action [4]. This “package” of both algorithmic and analytical

improvements is what we call Stabilized Wilson Fermions (SWF).

The SWF package is of interest on its own, not just in the context of master-field simulations.

Even at traditional volumes, SWF could have great benefits for single-baryon and light nuclear

physics applications due to them enabling coarse lattice spacings at quark masses closer to the

physical point, where WCF have issues due to stability [5]. For this reason, a new research

collaboration has been formed to study and generate ensembles with SWF at the state-of-the-art

level.

3.1 The OPEN LATtice initiative

The study of Stabilized Wilson fermions only began in 2018 and many questions with regards to

their applicability and properties in the parameters space need to be answered. In the context

of master-field simulations there are encouraging results from [6, 7], but more evidence is still

needed, especially in the case of coarse lattice spacing. The very first study [4], in which the

non-perturbative tuning of the Sheikholeslami-Wohlert coefficient cSW was begun, showed early

indication of a very good scaling behavior towards the continuum.

To enable further investigations on SWF the OPEN LATtice initiative was founded [8]. This

is, at the time of this writing, composed by seven principal investigators from the USA, Europe

and Asia and one doctoral researcher, the author of this thesis. The goal of the collaboration is to

generate state-of-the-art QCD ensembles using SWF and share them according to the principles

of the open science philosophy with all of the LQCD community. Most of the results presented in

this chapter have been produced as part of this effort.
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3.1.1 Open science policy

Since generating QCD gauge field ensembles is an extremely costly procedure from the numerical

point of view, it became apparent in the early stages of Lattice QCD that storing and sharing the

ensembles was of particular importance. One key aspect is to enable research groups with limited

access to HPC facilities to participate in the scientific effort without having to start from scratch,

but by using community-generated ensembles.

Some remarkable community-wide efforts were made, for example in the establishment in 2002

of the International Lattice Data Grid (ILDG) [9, 10] and all the previous smaller regional Lattice

Data Grid. This proposed a standard format for the metadata and the gauge field configuration

data and provided an interface where collaboration could upload and share ensembles. However,

over the years, its use and relevance decreased. Only in the past two years, an effort to revise,

improve and revive the ILDG has been set in progress.

The OPENLat collaboration strongly believes in the values of open science as a means to

facilitate the advance of Lattice QCD. Here are summarized the main points that we stand by:

• Define and uphold quality: we propose to define quality standards for the ensembles we

generate. In particular, some control observables are routinely checked to assess the quality

of the produced gauge configurations and the stability of the Markov Chain. These quality

standards are themselves continuously researched and improved upon.

• Share and maintain repository: a crucial aspect when generating gauge field ensembles is to

maintain an accessible long-term storage space for all the data that is produced. This requires

data-management facilities in HPC centers, so it is also important to provide strategies for

easy access to the data once it is generated and to control the integrity of the data itself.

Once the ILDG should become active again, we are strongly in favor of complying with the

upcoming standard of formats and sharing procedures.

• Community boosting: the collaboration is open to the possibility of new members of

interested parties joining our efforts with new resources to expand our sets of ensembles.
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• Grant and enable access: we will ensure that when the ensembles are completed, which is

a three-stage process (see the following section), all the gauge field configurations will be

made open access. This means that no restriction will be imposed by the collaboration on

which research groups/projects can use the ensembles.

3.1.2 SWF Ensembles from the OPENLAT Initiative

The goal of the OPENLAT initiative is to generate a set of lattice gauge field ensembles using SWF

that span a multitude of parameters. This is done obviously to allow taking all the limits required

to handle the systematic uncertainties properly for rigorous precision results. In particular, we

span three parameters: the lattice spacing a for continuum extrapolation, the pion massmπ for

chiral extrapolations
1
and the total lattice size L to control the finite volume effects. It should be

noted that the coarsest lattice spacing, especially with small pion masses, which are, for example,

useful for nuclear physics studies, is of particular interest since they represent the regime where

SWF are supposedly better than regular WCF.

The target is to generate 500 independent configurations per ensemble, to later be extended to

1000. This is to be done in three stages:

• Stage I: ensembles at the SU(3) flavor symmetric point, i.e. mπ = mK = 412MeV

• Stage II: ensembles withmπ = 300, 200MeV

• Stage III: ensembles at the physical pointmπ = mK = 135MeV

At the end of each stage, a publication presenting basic observables computed on the ensembles will

be released as reference, together with the public availability of all the gauge field configurations.

The choices of lattice spacings to be simulated are a = 0.064, 0.077, 0.094 and 0.12 fm, and

all the ensembles have standard periodic boundary conditions. However, an additional set of

1
Chiral extrapolations are extremely useful even when ensembles at the physical point are available, as they

can help constrain fits in cases where a functional form for themπ dependence is known, for example from chiral

perturbation theory (χPT) to improve the signal at the physical pion mass by means of statistical fitting.
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Figure 3.1: Planned combinations of pion mass mπ and lattice spacing a for the OPENLAT

ensembles.

Figure 3.2: Overview of the OPENLAT ensembles presented here as parametrized by the lattice

spacing a andmπL. The height of the bars in the histograms represents the number of independent

configurations that have been generated. Shaded boxes are ensembles in the tuning state.
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ensembles with a = 0.055 fm will be generated with open boundary conditions to further improve

critical slowing down and circumvent topological freezing.

In Figure 3.1 the selected combinations ofmπ and a are presented. At the time of this writing,

the OPENLAT Initiative is approaching the completion of Stage I, in Figure 3.2, there is the

most recent available status update on the ensemble generation. The shaded squares represent

ensembles that are in the “tuning” stage, where the MC algorithm for generation is adjusted and

the Markov chain is thermalized. In this chapter, we will present some of the procedures used for

computing the reference observables for the upcoming Stage I publication.

3.2 Stabilized Wilson Fermion Package

The SWF package comprises of a set of tools aimed at improving the stability of Wilson fermions

simulations. While some of them had already been established previously, others are entirely

new and were proposed in [11]. We can, however, categorize the improvements into two sets;

one is aimed at better stability of the generation algorithms and other is improving the fermion

discretization. The simulations are performed using the openQCD2.0+ software package[12].

As stated in the previous section, to generate the state-of-the-art ensembles a plethora of well-

established techniques that improve the performance of the MCMC is also used, such as mass-

preconditioning through Hasenbusch chains [13, 14], twisted mass reweighting for light quarks [15,

16] and the improved linear solvers such as the SAP [17, 18].

3.2.1 Algorithmic Stability Improvements

There are three components to the SWF in this category. The first is the Stochastic Molecular

Dynamics (SMD) algorithm [19–22]. It is a modification of the traditional HMC algorithm aimed

at preventing the problem arising from large jumps in the phase space trajectory. These can, for

example, be due to an accumulation of errors coming from the numerical integration of the MD

trajectory. The issue is that when such a jump occurs, the algorithm needs to spend several cycles

to re-thermalize towards the target distribution. The key difference in SMD is that the momenta
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are not chosen randomly at every step but are instead randomly rotated from one update to the

other.

The algorithm is schematically presented below:

1. Refresh π(x, µ) and ϕ(x) by a random field rotation: π → c1π + c2v

ϕ→ c1ϕ+ c2D
†η

(v and η normal distributed)

c21 + c22 = 1, c1 = e−ϵγ , ϵ =MD integration time, γ = friction parameter

2. short MD evolution

3. Accept/Reject-step (exact algorithm)

4. Repeat ⟲

Where π(x, µ), ϕ(x) are the momenta of the pseudo-fermion and gauge field, respectively. With a

little work, it can be shown that the SMD and the HMC are equivalent in the case of fixed ϵ and

large γ. In Figure 3.3, we show a simple schematic representation of the SMD as compared to the

HMC algorithm.

Some interesting features of the SMD are the proven ergodicity and its convergence to the

exact stationary solution [23], the significant reduction of unbounded energy violations |∆H| ≫ 1

and the decrease autocorrelation at fixed cost. The effect is due to the algorithm being a “slower”

than the HMC in terms of updates, but sampling the phase space in a more efficient way that more

than compensates for the difference. Here∆H is the difference in the energy before and after a full

microcanonical update, which enters the accept-reject step of the algorithm in the exact manner

as in the HMC, see Equation (1.44). One final feature, which only appears when using the SMD in

conjunction with deflation algorithms for the pseudo-fermions, is that the smoother updates in the

gauge field and its associated momenta ϕ(x) lead to improved updates of the deflation subspace

as well.
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Figure 3.3: Pictorial representation of the HMC and SMD algorithms for generation of gauge field

ensembles. Image courtesy of A. Francis.

The next tool for improving the algorithmic stability in SWF that we present is the use of a

volume-independent norm as a stopping criterion in the linear system solve for pseudo-fermions.

As shown in Section 1.4, it is usual practice to stop the algorithm when:

∥rn∥ = ∥η −Dqi∥ < ϵ ∥η∥ . (3.1)

However, this equation hides the fact that one is free to choose any vector norm. Most commonly,

the L2 norm is chosen, but this leads to the criterion to be volume dependent. Hence, in the SWF

package, the supremum norm is used. This norm helps against local effects that could lead to loss

of precision.

L2 norm ∥η∥2 =
(∑

x(η(x), η(x))
)1/2

→ ∝
√
V

supremum norm: ∥η∥∞ = supx ∥η∥2 → V−independent

The last algorithmic stability improvement is the modification of the accept/reject global

sum implementation, in openQCD2.0 in our case, to handle quadruple precision to prevent the

accumulation of error, especially in the case of very large volumes. This is relevant primarily for

master-field simulations, but it is nonetheless a part of the SWF package.
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3.2.2 The Exponential Clover Action

Probably the most striking feature of SWF is the use of a new discretization for the fermion

action. This makes SWF fundamentally different from WCF, even though, as we will see, the new

discretization is very similar to the original one by Sheikholeslami and Wohlert [1]. To start, we

recall, from the discussion in Section 1.2, the full form of the WCF operator:

DSW(x, y) =
1

2a

±4∑
µ=±1

(1− γµ)Uµ(x)δx,(y−µ̂) +
(
m+

4

a

)
δx,y +

i

4
cSWσµνGµν(x)δx,y. (3.2)

When applying even-odd preconditioning, as is standard practice since the field at a lattice site

is only connected through the derivative to its nearest neighbors, which all have the opposite

“parity”, the operator is takes the blocked form:

D =

Dee Deo

Doe Doo

 . (3.3)

The hopping term is only in the even-odd off-diagonal component, while the diagonal blocks are

diagonal matrices themselves. Their sum is the diagonal component of the originalDSW
operator:

Dee +Doo =M + cSW
i

4
σµνGµν , (3.4)

where we have used the shorthand notation ofM = 4
a
+m. By inspecting this diagonal term, one

can conclude that the SW Dirac operator is not protected from having arbitrarily small eigenvalues

coming from the sum ofM with the clover term. Furthermore, in this formulation, the positive

and negative eigenvalues are distributed equally. The probability of Doo having a very small

eigenvalue scales with the number of eigenvalues itself, which is determined by the volume,

making such simulations pathological.

In order to fix this problem, when Stabilized Wilson Fermions were proposed in [11], the WCF

discretization was replaced with an exponentiated version of the clover term:

Dee +Doo =M + cSW
i

4
σµνF̂µν → M exp

[c′SW
M

i

4
σµνF̂µν

]
. (3.5)

It is trivial to see that the first-order expansion of the exponential version of the operator is

identical to the traditional Wilson Clover. This new variant is, by definition, positive definite and
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easily invertible. These two features make it suitable for even-odd preconditioning, as now Doo is

fully protected from small eigenvalues. It should also be noted that the exponential clover term is

a valid Symanzik improvement term, which is crucial for renormalizability. One should take care

that the c′SW coefficient is different in the exponential version than the one in the ordinary clover

action, so it needs to be re-tuned non-perturbatively.

It should, however, be noted that exceptionally small eigenvalues could still be present as in

the traditional WCF, but these exceptional configurations would not be given by the clover term

anymore, but from other sources. SWF do not entirely solve this problem, but they mitigate it in a

parameter region that is inaccessible to regular WCF simulations.

3.2.3 A Quenched Example of the Exponential Clover Action

To show the difference between the WCF action and the Exponential Clover one, we report the

test done in [24] of a quenched calculation of the pion correlator. By quenched, we mean that

the fermion action that was used for generating the ensemble is not the same action that is used

when calculating the quark propagator for the fermion contractions. In particular, this test was

performed with 1000 configurations with the gauge coupling β = 6.0 (a = 0.093fm) and volume

L4 = 484. The coefficients cSW for the two actions were tuned separately and the values of the

quark masses were fixed to give the same pion massesmval

π = 320MeV.

The results, which can be seen in Figure 3.4, show no spikes in the correlator MC history,

implying a much stronger stability for the exponential clover term. In turn, for all Euclidean

separation times t (right plot), the correlator is well behaved, while it is clear that for times t/a = 20

the standard clover results are dominated by the noise coming from exceptional configurations.

3.3 Simulating Dynamical QCD with 2 + 1 Quark Flavors and SWF

The goal of the OPENLAT Initiative is to generate QCD ensembles with 2+ 1 dynamical fermions,

that is, a light degenerate isospin doublet of light quarks and a heavier strange quark. In this

section, we first briefly describe the tuning procedure for cSW (Section 3.3.1), then explain how
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Figure 3.4: Left: The pion correlator determined using both the standard and exponentiated clover

terms. Right: The Monte Carlo history of the pion correlator at fixed Euclidean time t/a = 20,
towards the center of the lattice. Plots courtesy of A. Francis.

the quark masses are fixed (Section 3.3.2) and finally, we’ll give some details on the ensemble

generation process (Section 3.3.3).

3.3.1 Non-perturbative Tuning of cSW

Following the procedure of Lüscher et al. [25] the tuning of cSW was performed in [11] for

the range β ≥ 3.8 for three quark flavors. Later in [24] results were presented that extended to

β = 3.685 to enable even coarser lattice spacings. This tuning is performed using the Schrödinger

functional boundary conditions [26], determining cSW by imposing O(a)-improvement on small

volumes, where L = 8 and T = 16. For the β = 3.685 point a value of L = 16 was used instead.

In Figure 3.5 on the left, we report a comparison of the tuned values of cSW for WCF and our new

exponential clover action. On the right there is a comparison of the fits between [11] and [24].

The results of this procedure lead to the following interpolation for the Sheikholeslami-Wohlert

coefficient for the exponential clover action:

cSW(g20) =
1− 0.325022g20 − 0.0167274g40

1− 0.489157g20
. (3.6)
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Figure 3.5: Non-perturbative tuning of cSW using the Schrödinger functional for 2 + 1 dynamical

fermions. Left plot: comparison of theWCF and exponentiated clover fermions as presented in [11].

Right plot: more recent results for the tuning of cSW (blue line and points) with an additional

value of the coupling β = 3.685, as done in [24]. The red line and points are the results from [11].

3.3.2 Setting the chiral trajectory

In order to simplify the treatment of the continuum limit, the OPENLAT Initiative decided to

adopt the approach previously used by the QCDSF [27] and CLS [28] collaborations for dealing

with the tuning of the quark mass parameters. The key idea is to link the masses of the light quark

and of the strange quark together by tuning them at the SU(3) flavor-symmetric point, where all

quark masses are equal to each other and fix the trace of the quark matrix when changing the

coupling: Tr[M ] = const. This is done to reduce the mass-dependence cutoff effects.

The starting point of the procedure is the relation, coming from chiral perturbation theory, for

the meson mass combinationmπK , which is known to be proportional to the trace of the quark

mass matrix. This information can then be used as a tuning condition, that is, one changes the

quark mass values until the physical value is obtained:

m2
πK =

2

3

(
m2
K +m2

π/2
)
≡ m2

πK |phys. (3.7)

This mass tuning needs to be done at every value of the coupling, i.e. for every lattice spacing,

with some minor perturbative effects coming from isospin breaking and electromagnetic effects,

see [29]. When a different pion/kaon mass is desired, one needs to change the quark mass matrix
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accordingly, keeping Tr[M ] fixed. This means that as the pion mass approaches the physical point,

so will the kaon mass.

3.3.3 Generation of SWF Ensembles

At this point, we have presented all the ingredients needed by the OPENLAT initiative to generate

the SWF ensembles. As discussed in Section 1.4, in order to fix the scale of the simulation, one needs

one physical input for every parameter of the simulation. We chose to parametrize everything in

terms of the pion massmπ , the kaon massmK and the gradient-flow time scale t0 [30], following

the procedures of the CLS collaboration [28, 31]. In particular, the two quantities ϕ2 and ϕ4 are

kept fixed while approaching the continuum:

ϕ2 = 8t0mπ
2 ϕ4 = 8t0

(
mK

2 +
1

2
mπ

2

)
. (3.8)

This criterion, together with the non-perturbative tuning of cSW and the fixing of the trace quark

mass matrix, sets the conditions for our simulations.

At the time of this writing, in the table below we report the available ensembles from the

OPENLAT Initiative at the flavor-symmetric point:

β Size a[fm] mπ L [fm] mπL Ncfg

3.685 243 × 96 0.12 411.54(46) 2.9 6.0 1200
3.8 243 × 96 0.094 410.58(84) 2.3 4.5 1200

323 × 96 0.094 409.57(46) 3.0 6.0 1300
3.9 483 × 96 0.077 410.39(22) 3.6 7.5 300
4.0 483 × 96 0.064 408.93(25) 3.0 6.4 600

Table 3.1: Current Stage I ensembles of the OPENLAT Initiative.

Modern lattice simulations have complicated algorithms and a plethora of control observ-

ables need to be monitored while generating configurations via MCMC. Here we present a

non-exhaustive list of the checks that our collaboration performs while generating ensembles,

with selected results for the β = 3.8, V = 323 × 96 ensemble shown as examples:
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• Lack of thermalization effects in the plaquette and in the energy density. If there is a drift in

the average value of one of these quantities, then the algorithm is not sampling the PDF

properly. In particular, a jump in either observable would imply the transition from a local

minimum of the action to another, which is undesirable.

Figure 3.6: Monte Carlo history of the plaquette during the a094m400 ensemble Markov chain.

As expected, since the system is thermalized properly, the value is constant along the chain within

the bounds of small stochastic fluctuations.

• Check the fluctuations, distribution and autocorrelation of the topological charge Q com-

puted via the gradient flow. This is crucial in order to ensure correct sampling from all

topological sectors, see Appendix 1B. The autocorrelation of this observable will be analyzed

more in detail in Section 3.4.1

Figure 3.7: Monte Carlo history of the topological charge computed with the gradient flow during

the a094m400 ensemble Markov chain.
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Figure 3.8: Distribution of the topological charge computed with the gradient flow during for the

ensemble a094m400. The orange line is a Gaussian fit to the histogram. The data is well described

by a Gaussian, meaning that the algorithm is sampling all topological sectors effectively.

• We ensure that the distribution of the error in the Hamiltonian at the end of a single MD

update, ∆H , matches the acceptance rate of the SMD algorithm. A more detail discussion

of this criterion can be found in [32], but, in general, if large fluctuations and non Gaussian

behavior were to be found in the distribution of ∆H that would imply that the MD step

size δτ is too large leading to suboptimal sampling.

Figure 3.9: Distribution of the error in the Hamiltonian ∆H of the MD updates during the

a094m400 ensemble Markov chain. The solid lines represent the expected distribution from the

acceptance rate (blue) and the fitted distribution (red). The relative discrepancy is acceptable as

long as the fitted Gaussian is narrower and no apparent deviations from a normal distribution are

present.
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• For the chiral trajectory, we make sure that the tuning quantity ϕ4 = 8t0(m
2
K + m2

π/2)

is within 0.5% of the target value of 1.115 with an error of max. 1σ. This quantity is a

hadronic observable, we will discuss it more in details in Section 3.4.3.

3.4 First SWF Ensembles and Light Hadron Spectroscopy

Now that we have presented how the SWF ensembles are generated, we turn our attention to

their physical properties. As mentioned in the presentation of the OPENLAT Initiative, one of the

aims of the collaboration is to provide potential users with all the relevant metadata. In particular,

we want to also provide reference values for the autocorrelation of the configurations and light

hadron masses. These quantities are not meaningful when computed on a single configuration;

they are only useful as ensemble averages. Hence, it would be interesting to provide these results

in the most unbiased and reproducible form as possible.

In this chapter we, will first present some results for pure gauge observables and the integrated

autocorrelation times for the topological charge of the ensembles under consideration, then in

Section 3.4.2 we will present a method for Bayesian estimation of the hadron spectrum and, finally,

in Section 3.4.3 we will show the preliminary results.

This analysis is restricted to a subset of all the configurations shown in Table 3.1 as shown in

Table 3.2; this is due to the ongoing generation of these ensembles. For simplicity, we assign a

readable name to each ensemble, which we will use to refer to them in the rest of this section.

Ensemble t0/a
2 a [fm] Ncfg Nsrcs

a12m400 1.48548(64) 0.12 600 100
a094m400S 2.4482(50) 0.094 500 100
a094m400 2.43979(89) 0.094 1200 100
a077m400 3.6198(30) 0.077 900 100
a064m400 5.2588(46) 0.064 1000 100

Table 3.2: SWF Ensembles used for the analysis. We note that the ensemble a094m400S is labeled

differently as it represents a smaller volume compared to the others. Ncfg represents the number

of gauge field configurations analyzed, but not all of them are to be considered independent. Nsrcs

is the number of stochastic sources used to compute the averaged hadron correlators.
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3.4.1 Gradient Flow Scale Determination and Autocorrelation Analysis

The first analysis that we performed on the ensembles was to determine the value of the gradient

flow scale t0 to fix the lattice spacing in physical units. We used the value of

√
t0 = 0.1464(18)

fm from [28] to convert to fermis. The determination of t0 has been carried out following the

procedure outlined in Appendix 1C and the results are summarized in Figure 3.10 for the five

ensembles at hand.
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Figure 3.10: Scale setting example on the Stabilized Wilson Fermions ensembles, more details

found in Chapter 3. In order to determine the lattice spacing a in physical units one determines

the point tf/a
2
at where t2f ⟨E⟩ = 0.3.

Another quantity of interest that can function as a check for the quality of the ensembles

but that can only be determined at the ensemble level is the integrated autocorrelation time τint

of some observables. In particular, it is known that the topological charge (see Appendix 1B

for a detailed discussion) has the longest correlation length along the Markov chain [33]. Its

value is crucial to understand if all topological sectors are being sampled correctly and also to

determine if the configurations that are being produced are statistically independent. To do this,

we employed the windowing procedure outlined in Appendix 1A.1 on data for the topological

108



charge Q at non-zero flow-time, with

√
8tf ≈ 0.3 fm. The integrated autocorrelation time has

also been computed for the hadronic two-point correlators for the pion, the proton and the Ω

baryon, as these are the quantities that we focused on afterward. For the correlators, we chose a

value for the source-sink separation t = 20 to compute the values for τπ , τP ,τΩ, this is an arbitrary

choice, but there is no reason to think the autocorrelation, especially at large t should depend on

it. The results are reported in Table 3.3.

Ensemble τQ τπ τp τΩ
a12m400 0.53(4) 1.56(26) 0.53(4) 0.50(4)

a094m400S 0.66(13) 0.51(6) 0.54(6) 0.51(6)

a094m400 0.64(6) 0.55(6) 0.51(4) 0.44(6)

a077m400 0.54(10) 0.63(8) 0.72(10) 0.75(13)

a064m4001 2.25(83) 0.81(15) 1.02(21) 1.03(20)

a064m4002 1.52(42) 0.50(6) 0.57(11) 0.66(11)

Table 3.3: Integrated autocorrelation times of the topological charge Q and of the pion, proton

and Ω two-point correlators on the SWF flavor-symmetric ensembles.

One important remark is that the ensemble a064m400 has two entries in the table: they

correspond to two different MD updates spacings between saves of the gauge field configurations

during the execution of the SMD algorithm. The save interval was first set to a small value, but a

preliminary analysis of τQ suggested that the save interval was too small, as there was a large

autocorrelation between the configurations, τQ = 2.25. This is to stress the importance of this

analysis.

From the results for τπ, τp and τΩ we can observe that for hadronic observables we ob-

serve that a064m4001 and a12m400 have values for the integrated autocorrelation time of

at least one hadron that are considerably larger than the optimal value of 0.5, as explained in

Appendix 1A.1. The solution we adopted has been to use statistical blocking for these ensembles,

see Appendix 1A.1.1, with block size 2, before analyzing the data to decorrelate the samples.
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3.4.2 A Bayesian Analysis Framework for Hadron Masses

In Chapter 2 we have extensively presented results of hadron correlators and effective masses.

However, to the modern lattice practitioner, the analysis used in the previous chapter might have

appeared too simplistic. In particular, we relied on constant fits for the effective masses. While

this is still a widely used approach, an increasing number of precision studies now use more

sophisticated techniques, even for basic hadron spectroscopy.

One of the main issues with the constant fit approach is the large bias that is introduced in

selecting the fitting range from the effective mass. While this might not seem like a large problem

in the case of mesons, where the signal does not degrade towards large source-sink separation

times, in the case of baryons, where the signal-to-noise problem arises, this bias can sometimes

be non-negligible. However, the systematic error introduced by choice of the fitting range is not

necessarily always investigated, nor is there a clear framework for how to estimate it.

One apparently obvious improvement over constant fits of the effective mass is to improve

the approximating functional form. In particular, since we know that correlators are a sum of

decaying exponentials as shown in Section 1.4, one could try directly fitting the correlator this

way. Such an approach, usually called in jargon “multi-state fitting”, is valid and gives good results;

however, the fitting algorithms tend to be unstable for such functionals due to their non-linearity.

Furthermore, the higher excited states have a much sharper decay due to their large exponent,

which in turn leaves almost no signal on the correlator. These two problems lead to standard

fitting procedures being somewhat unreliable and biased in the case of multi-state fits.

Bayesian Fitting with Constraints A solution to the problem of the stability of multi-state fits

for hadron correlators can be the introduction of educated initial guesses for the fit parameters.

These initial values, or priors, introduce bias in the end results of the fit, which needs to be

accounted for. Luckily, Bayesian statistics can help to deal with this issue in a systematic and

mathematically rigorous way.

The approach to Bayesian curve fitting in the presence of prior constraints applied to the

110



specific case of lattice correlator data was first introduced by Lepage et al. in [34]. The starting

point is to consider the exact form of the correlator from theory:

Cth(t, An, En) =
∞∑
n=1

Ane
−Ent, (3.9)

where An are the amplitudes of the wavefunction corresponding to the energy levels En. A

traditional fit would proceed by truncating the sum up to a fixed number of stated Ns and

considering all the An and En as parameters. Then one would minimize the χ2
function defined

as:

χ2(An, En) =
∑
t,t′

∆C(t)∆C(t′)

σ2
t,t′

, (3.10)

where∆C(t) = C(t)−Cth(t, An, En), withC(t) begin the ensemble average data for the correlator

at time t. The term σ2
t,t′ = C(t)C(t′) − C(t) C(t′) is the correlation matrix instead. The first

consideration to make is that contributions of high-energy states are suppressed for large t, which

means that there exists a time tmin above which only a finite number of states are contributing,

hence truncating the infinite sum in the theoretical formula. Choosing a too small value for

tmin would not be beneficial for fitting purposes and would bias the values of An, En away from

their true values, while a too large value would lead to an effective loss of information leading to

increased statistical errors. Without a rigorous way of determining the systematic uncertainties,

this choice of tmin is biased and necessarily ad hoc, the same way the choice of a fitting window

for the constant case is. A good procedure would then be to test all possible values of tmin over a

range of maximum numbers of states in the fit Ns.

To constrain the fits and improve stability a choice of priors Ãn, Ẽn for the amplitudes and

energies of the states is made. Then the χ2
is redefined as:

χ2 → χ2
aug = χ2 + χ2

prior with χ2
prior =

∑
Ns

An − Ãn
σ2
Ãn

+
∑
Ns

En − Ẽn
σ2
Ẽn

(3.11)

We should stress that the priors Ãn, Ẽn and their uncertainties σ2
Ãn

, σ2
Ẽn

are inputs to the fit. This

augmented χ-square function χ2
aug will then favor fits with the final parameters close to the prior.

It is then crucial to select the Gaussian uncertainty of the priors to a reasonable value that is not
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too constraining. With these definitions, the constrained fitting procedure is then to fit the data

for all possible values of tmin and Ns is increased until the parameter of interest converges.

It is interesting to notice that the final value of χ2
aug is not of particular interest in the case

of constrained fits. What really matters is the stability and the convergence of the fits as tmin

changes and Ns is increased.

BayesianModel Averaging To further determine an unbiased value for the mass of the hadrons,

we use a Bayesian model averaging procedure based on the Akaike Information Criterion (AIC)

that has been recently proposed in [35] for the case of lattice correlator data with data windowing

selection. This procedure further eliminates the need to “manually” check for convergence in the

constrained fitting procedure as the number of states. In turn, it defines a weight for every fit

result, parametrized by the pair tmin, Ns that is used to determine the weighted average of the

fits.

Given a fit result with parametersM = A1, . . . An, E1, . . . En the AIC is:

AICM = −2 log(pr(M)) + χ2
aug + 2k + 2n (3.12)

where pr(M) is the model likelihood function of the model, k is the number of fit parameters,

including priors, and n is the number of excluded points from the fit, i.e. it depends on changes of

tmin. The minimum value of the AIC among all models is used to determine the relative likelihood

of a given modelMi and some data D as:

pr(Mi|D) =
exp(AICmin − AICi)∑
j exp(AICmin − AICj)

(3.13)

where the denominator is just to fix the normalization to allow a probabilistic interpretation of

the quantity. The relative likelihood is then used as weight for computing the weighted sum of a

fit parameter ρ ∈M . The unbiased estimator for the parameter is then its weighted average and

its uncertainty is given by:

σρ =
∑
i

σρ,ipr(Mi|D) +
∑
i

⟨ρ⟩2ipr(Mi|D)−

(∑
i

⟨ρ⟩ipr(Mi|D)

)2

(3.14)
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There are a few considerations to make on this procedure. The first and most important is

that it requires no input whatsoever: the whole fitting procedure only now requires making an

educated guess for the priors and attaching to their values a reasonably large uncertainty such

that they do not become dominant in the fit. No further input is required. Another interesting

feature that can be immediately inferred from Equation (3.12) is that this method favors models

that a simpler, i.e. fit functions with fewer number of states. This sort of built-in Occam’s razor is

very useful to a posteriori gain intuition on how many states can be determined from the given

set of data. At the same time, Equation (3.12) tells us that this procedure favors models with larger

fitting ranges, hence more data, which is certainly a feature that we implicitly desire.

3.4.3 Light Hadron Spectrum and Scaling from SWF Ensembles

In order to compute the light hadron spectrum on the SWF ensembles we have implemented the

exponential clover action in the Chroma [36] software package, for both the QDP++ (traditional

CPU) and QDP-JIT (just-in-time compiled architecture-independent) backends. The propagators

have been computed using the BiCGSTAB solver from the highly optimized QUDA GPU package.

In addition we utilized the lalibe [37] software, which builds on top of Chroma to calculate

fermion contractions.

For this study, we decided to use Gaussian invariant smearing [38], see Section 1.3.4, and in

order to choose the correct parameters, a quick study of the smearing results was conducted on

200 configurations with a = 0.094 fm. The results can be seen in Figure 3.11. When dealing with

smearing, one needs to choose the parameters in order to suppress the higher excited states and

reach the plateau earlier. However, if the smearing is excessive, then the signal starts to degrade

and the statistical errors increase. In our case we opted for Nsmear = 32 and σ = 3.86, where

σ, following the notation used in Section 1.3.4, is

√
4αNsmear and represents a dimensionless

smearing radius.

A common technique in lattice QCD calculations is the so-called “variational method” [39, 40].

In this context, it means that one computes a given correlation function with different combinations
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Figure 3.11: Proton effective mass computed with different Gaussian smearing parameters. The

data is from the ensemble a094m400, 200 configurations, 10 sources per configuration with

smeared-smeared propagators.

of interpolating operators at the source and the sink. Then a matrix is constructed with all the

results and a Generalized Eigenvalue Problem (GEVP) is solved to greatly improve the signal of the

lowest lying states. This procedure, however, requires computing several propagators for every

source, as different interpolating operators lead to different sources and hence linear systems.

Following the analysis conducted for example in [41] we used a numerically cheaper, but not so

powerful, method: computing only the point-smeared (PS) and smeared-smeared (SS) correlators

for every hadron. This can be done with only one propagator solve, as the two correlators share

the source.

The fitting of the amplitudes and energy levels of the two correlators is performed simul-

taneously, utilizing the Bayesian fitting procedure highlighted above. The correlated fits have

been performed with the use of the gvar and lsqfit python packages, which have been developed

starting from the work done in [34]. The ansatz for the multi-state correlator, either PS or SS,
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with Ns states reads:

C(t, ZP,n, ZS,n, En) =
n=Ns∑
n=0

Z2
S,ne

−Ent +
n=Ns∑
n=0

ZS,nZP,ne
−Ent, (3.15)

where the factors ZP,n and ZS,n represent the amplitudes of the source and the sink for a given

energy level En.

As highlighted previously, our fitting procedure only requires a choice of the priors. For

the hadron spectroscopy case, we had to choose values for all the parameters En, ZP,n and ZS,n

together with their uncertainties to use for χprior, see Equation (3.11). The priors for the amplitudes

Z̃P,n have been chosen to be all equal to the ground state one, which is fixed from the data, as we

will see later. For the Z̃S,n priors, the values from the second exited stated up to Ns have been

taken as half the ground state one. This is motivated by the expectation that smearing should

reduce the overlap with higher excited states. The uncertainties of the amplitude priors have been

set by the data for the ground state and set to twice the ground state uncertainty for the excited

state. So, to summarize:

Z̃P,0 → fixed from data Z̃P,i = Z̃P,0 for i = 1 . . . Ns (3.16)

Z̃S,0 → fixed from data Z̃S,1 = Z̃S,0; Z̃S,i =
Z̃S,0
2

for i = 2 . . . Ns

σZ̃P,0
→ fixed from data σZ̃P,i

= 2σZ̃P,0
for i = 1 . . . Ns

σZ̃S,0
→ fixed from data σZ̃S,1

= 2σZ̃S,0
;σZ̃S,i

= σZ̃S,0
for i = 2 . . . Ns.

To fix the ground state values, we plot the ground state amplitude computed with the effective

mass, for both the SS or PS smearing:

Z̃S/P,0 = e−meff(t)tCS/P (t) where meff(t) = ln

(
CS/P (t+ 1)

CS/P (t)

)
, (3.17)

where CS/P (t) is the short-hand notation for the two-point correlator computed either with SS

or PS respectively. In Figure 3.12 we show an example of the prior fixing procedure for Z̃P,0 and

Z̃S,0 from the data, noting that the gray bands in the plots represent the ±σZ̃S/P,0
band, which are

taken to be approximately 10 times larger than the expected uncertainties of the real amplitudes.
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This is to stress that the bias introduced by this prior choice is really minimal, as it would be

extremely hard to argue that the true value of the amplitude does not lie in the shaded region.

From the values of Z̃S/P,0 and their corresponding σZ̃S/P,0
, the values for all the other priors are

set as we explained earlier.
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Figure 3.12: Amplitudes for the point-smeared (left) and smeared-smeared (right) correlators and

the respective prior choices. The data is from the a094m400 ensemble, with 100 stochastic sources

per configuration.

The choice of the energy priors is made in a similar manner, with the difference being that

a logarithmic prior is used on the difference between the energy levels to force the order of the

energy states and improve the stability of the fit. In practice, we fix the prior Ẽ0 and its associated

σẼ0
by looking at the effective mass plot, again following the rule of thumb of 10 times the expected

final uncertainty for σẼ0
. All the other energy priors are set to be ordered in steps of 2mπ above

the ground state, with equal σẼn
. In other terms:

Ẽ0 → fixed from data ln(Ẽi − Ẽi−1) = ln(2mπ) for i = 1 . . . Ns (3.18)

σẼ0
→ fixed from data σẼi

= σẼ0
for i = 2 . . . Ns.

The value ofmπ to be used in fixing the priors does not need to be very precise, because of the

very large size of σẼn
, so it can be determined with a rough constant fit to the effective mass,

without fear of impacting the final results.
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In Figure 3.13 we show the procedure for fixing the ground state energy priors and widths

from the pion and proton effective mass. Again, the shaded region is the width of the prior.
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Figure 3.13: Effective mass for the pion (left) and proton (right) correlators and the respective

prior choice for the ground state energy E0. The data is from the a094m400 ensemble, with 100

stochastic sources per configuration.

With this information, we have all the required inputs for our fits. As outlined in the previous

section, we perform a scan over a range of tmin, while the maximum value is fixed to the maximum

value for the mesons and to a value where it does not affect the fit results due to the low signal-

to-noise. Then we also perform fits in the range of NS = 1, . . . , 6. All the results are then

combined using model averaging. In Figures 3.14 to 3.16 we show our results for the a094m400

ensemble for the pion, the proton and the Ω baryon, as these are the only possible hadrons at the

flavor-symmetric point.

The first feature to notice is that the fits all converge as NS increases to the same value. This

is the expected behavior, as first discussed in [34]. The low NS states only agree with the other

results when tmin is large enough so that effectively no information on the higher states is present.

This can also be inferred by looking at the final fitted parameters for the excited states for large

tmin, which end up being almost unvaried from their prior value, meaning that the data and the

fitting procedure pose no constraint on those parameters. It should be noted that the height of

the top panel in Figures 3.14 to 3.16 is the width of the prior of the ground state energy. The

gray band in all plots shows the model average result and error. We can see that it is a good
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Figure 3.14: Fit results for the pion mass for the a094m400 ensemble.

representation of the data and is indeed compatible with all the converged fits and its uncertainty

is not significantly smaller; on the contrary, it is of the same order. This is to maybe go against

the myth that Bayesian fitting artificially decreases the final uncertainty.

The second panel of each figure shows the Q factor, or p-value, of all the fits, which is the

probability that the χ2
from the fit could have been larger, assuming the best-fit model is correct

and that the data are all Gaussian and consistent with each other. In general, good fits have

Q > 0.1. The third panel represents the normalized Gaussian Bayes Factor (GBF) wNs of the fits

at fixed tmin as NS is changed. The GBF, or pr(D|M), is the probability of obtaining the fit data

by randomly sampling the parameter model used in the fit. When comparing fit models at fixed

tmin, the ones with higher wNs will be more likely to represent the data.

From this data, we can infer that some fits have very poor quality, as expected, especially for

low number of states and low tmin, this is apparent when looking at the Q factor. The information
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Figure 3.15: Fit results for the proton mass for the a094m400 ensemble.

of wNS
, on the contrary, can help determine whether a certain number of states is too large. This

happens when all fits with more than n states, for a given value of tmin, have similar wNS
, which

implies that adding additional states to the fit function does not affect the fit.

However, what in the end impacts our final estimator is the pr(M |D), shown in the bottom

panel in the figures, which, as we explained in the previous section, is used a weight when

averaging the models. It is interesting to notice that the models that have a significant weight

have NS = 1, 2. This is expected, as from Equation (3.12), we see that fits with large NS are

exponentially suppressed in weight.

With this procedure, repeated for all ensembles, we performed a first study of the scaling of

hadron masses towards the continuum for SWF ensemble at the flavor symmetric point; all the

results for the individual fits can be found in Appendix 3A. First, in Figure 3.17 we computed ϕ4

according to Equation (3.8), to check the mass tunings of the ensembles. According to the quality
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Figure 3.16: Fit results for the Ω baryon mass for the a094m400 ensemble.

criterion that was imposed, the value of ϕ4 should be within the gray band at the 1σ level, which

is indeed the case, so the tuning has been performed correctly.

In Figure 3.18, we show the results, from which we can indeed notice that SWF show almost no

sign of cutoff effects for hadronic observables, they are, in fact, at the level of 1%. The continuum

limit extrapolations we for the masses of the proton and Ω are mp = 1175.0 ± 6.4 MeV and

mΩ = 1454.7± 16.8, the which uncertainties of ≈ 0.5% and ≈ 1.1% respectively are on par with

other determinations [41].
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3.5 Outlook for Studies with SWF

The results for the scaling properties of the hadron spectrum are very encouraging and show

the validity and quality of the new SWF ensembles that have been generated by the OPENLAT

initiative. At the most recent International Symposium on Lattice Field Theories, there have been

several works presented that used SWF, with topics in spectroscopy [4, 24], finite temperature

and master-field simulations [6]. Another current study, which we should mention, is the ongoing

calculation of CP violating operators for searches of neutron electric dipole moment [42], which

should see its first results in the upcoming year. Some of these studies are still in the preliminary

stage of what are calculations that have been previously done on other ensembles using SWF

configurations instead. All these results give growing evidence of reduced cutoff effects when

compared to other discretizations.

At the same time, more ensembles with different physical parameters, most importantly

different pion masses, are continuously being tuned and generated with an ongoing effort by the

OPENLAT Initiative on several HPC facilities worldwide, and when they are ready and publicly

made available, we expect to see wide adoption of the SWF ensembles for studies of Lattice QCD.
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APPENDIX 3A

BAYESIAN FIT RESULTS FOR SWF HADRON MASSES

In the table below we report the fit results for the SWF ensembles, from which Figures 3.17

and 3.18 are obtained. All results are obtained using the Bayesian analysis framework presented

in Section 3.4.2.

Ensemble t0/a
2 amπ amp amΩ

a12m400 1.48548(64) 0.25075(28) 0.7096(35) 0.8659(73)

a094m400S 2.4482(50) 0.19483(40) 0.5586(47) 0.6917(68)

a094m400 2.43979(89) 0.19470(17) 0.5541(19) 0.6791(63)

a077m400 3.6198(30) 0.159903(83) 0.4568(20) 0.5658(34)

a064m400 5.2588(46) 0.132932(84) 0.3793(17) 0.4659(55)

Table 3A.1: Final results for masses from SWF ensembles.

We also include, in Figures 3A.1 to 3A.4, the stability plots and weights for the ensembles

not shown in Section 3.4. It is important to notice the stability of the fitting procedure results,

how they are always compatible with the vast majority of the fits and do not underestimate the

uncertainties.
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Figure 3A.1: Fit results for the for the a12m400 ensemble.
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a094m400S Ensemble
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Figure 3A.2: Fit results for the for the a094m400S ensemble.
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Figure 3A.3: Fit results for the for the a077m400 ensemble.
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Figure 3A.4: Fit results for the for the a064m400 ensemble.
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CHAPTER 4

QUANTUM STATE PREPARATION ALGORITHMS FOR THE SCHWINGER MODEL

Despite the ever-increasing computational capacities of modern HPC facilities, one issue with

LFT calculations seems impossible to solve: the sign problem. This arises when sampling a PDF

in the MCMC that is not strictly positive. Clearly, this implies that the PDF is not actually a

probability distribution, but an approximation. Since the PDF in LQCD comes from the exponential

of the Euclidean action and the fermion determinants, one must ensure their positivity, but this

is not possible in the presence of chemical potentials [1], topological terms [2, 3] or real-time

evolution [4].

A possible solution would be to switch to Hamiltonian formalism, where the sign problem

is absent, but that would lead to large vector spaces that grow exponentially with the number

of lattice sites, which are untreatable even on modern supercomputers. One way to deal with

this formalism would be to utilize some computing machine that can easily deal with these bases.

Luckily, such machines do exist: Quantum Computers.

The field of Quantum Computing (QC) made giant leaps forward in the last decade, mostly

thanks to the experimental improvements that led to the creation of the first hardware. The

idea of quantum computers was first proposed in the 70s, with the development of the field of

quantum information [5–7]. Later it was suggested as a mean to simulate quantum problems

directly [8–10]. The main advantage they have as opposed to classical computers, in the context of

Physics applications, is that they have a natural way to implement the antisymmetry requirements

of fermionic systems, which will become important as we will discuss in Section 4.2.1. In more

general terms, quantum computers use qubits as their basic information unit as opposed to bits.

Operations on qubits are performed using quantum gates as opposed to binary logic gates.

Currently, we are in the so-called Noisy Intermediate Scale Quantum (NISQ) era of hardware,

meaning that current state-of-the-art machines have between tens to a few hundreds qubits,

which are not enough for designing fault-tolerant algorithms, hence the noisy, and are also not
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enough for “quantum supremacy” (that is solving a problem faster than any classical computer

could). Current hardware designs are varied [11], some of them are based on superconducting

circuits [12], trapped ions [13], optical lattices [14] or solid-state systems [15].

The model for computations that we will employ in this work is the quantum gate array, in

which an algorithm is represented by a chain of quantum gate operations applied to the qubits

of the system. In this model, a physics simulation can be performed by first preparing a state

of interest, then letting it evolve in real-time with the Hamiltonian and finally measuring an

observable. Each of the three phases of the computation presents its challenges and is actively

being studied. In this work, we will focus on three algorithms for state preparation: the Adiabatic

State Preparation (ASP), the Quantum Approximate Optimization Algorithm (QAOA) and the

Rodeo Algorithm.

Dealing with QCD on a quantum computer is currently beyond our capabilities, though there

is active research in possible ways to represent the LFTs on qubits [16–20] or by employing

tensor networks instead [21]. Furthermore, with the current hardware limitations, there is no

chance of reaching the scale of the simulations that are currently being done in LQCD, especially

when considering limitations due to noise. There is nevertheless a strong push to investigate the

feasibility of quantum computations of lattice field theories and a search for new algorithms and

approaches. In this work, we will then shift our focus to the Schwinger model, which is a toy

model for QCD as it shares some interesting properties like confinement.

This chapter is structured as follows: first, in Section 4.1, we will give a brief introduction to

quantum computing, then, in Section 4.2, the Schwinger model will be introduced and a possible

way to discretize its Hamiltonian on a quantum computer will be presented. Finally, in Sections 4.3

to 4.5, we will discuss three algorithms for state preparation and compare their results.

4.1 A Quick Tour of Quantum Computing

In computer science, the basic block of information is the bit, a binary state that can either be

0 or 1. A combination of n bits, a bit-string, can represent numbers from 0 to 2n. In quantum
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computing, one deals with qubits instead. The fundamental states are usually represented as:

|0⟩ =

1

0

 , |1⟩ =

0

1

 . (4.1)

Qubits, however, as opposed to bits, can be in any superposition of these two states, in particular,

they can be in any state:

|q⟩ = a |0⟩+ b |1⟩ with a, b ∈ C, |a|2 + |b|2 = 1. (4.2)

Qubit states are normalized to one and their amplitudes can be complex. A convenient representa-

tion of one qubit can be given by the Bloch sphere, given by the parametrization based on two

angles θ and ϕ:

|q⟩ = cos
θ

2
|0⟩+ sin

θ

2
eiϕ |1⟩. (4.3)

Quantum states can then be represented as points on the surface of the sphere, as shown pictorially

Figure 4.1: Graphic representation of the Bloch sphere. A quantum state corresponds to points on

the surface of the sphere, parametrized by two angles θ and ϕ.

in Figure 4.1.
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States composed of multiple qubits are obtained by taking the tensor product of single qubits:

|q1q2⟩ = |q1⟩ ⊗ |q2⟩ =

a1
b1

⊗
a2
b2

 =


a1

a2
b2


b1

a2
b2




=



a1a2

a1b2

b1a2

b1b2


. (4.4)

With this basic understanding of how qubits work, we can start looking at which operations one

can apply to them.

4.1.1 Quantum Gate Operations

Even though most computer programmers don’t think about the bit-level operations happening

in their CPUs, they are fundamentally designing algorithms that are chains of logic gates, such

as NOT, AND, OR and XOR and their combinations. These gates are then grouped together into

opcodes of the CPU, operations that can be done in a single clock cycle like addition, multiplication

or more complex ones, which take bits contained in the registry and run through the relevant

logic gate path and then write the result to another registry location. Quantum computers today

still don’t have this last level of abstraction and algorithms are still being written in terms of single

gate operations. However, the fundamental gates are not the familiar binary ones. We will now

summarize the main features of such gates.

All qubit gate operations are required to be unitary transformations on the qubits they act

upon. This is imposed by the constraint of preserving the normalization of the wave function.

There is, in principle, no limit on the number of qubits that a single gate operation can act upon,

but due to hardware constraints, NISQ machines only implement 1 and 2 qubit operations. In

general, they are represented with diagrams where horizontal lines stand for single qubits and

boxes and vertical lines stand for gate operations. The flow is read from left to right. For a generic

1-qubit gate, this looks like:

|q⟩

initial state

U
U |q⟩

final state
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All 1-qubit can be represented by a generic SU(2) transformation, which requires three

parameters, usually identified with three angles:

U(θ, ϕ, λ) =

 cos θ
2

−eiλ sin θ
2

eiϕ sin θ
2

ei(ϕ+λ) cos θ
2

 . (4.5)

This general version is, however, not very useful, so some special cases have their unique symbols

and diagrams.

Pauli Gates The first class of gates that we introduce are the single qubit gates that represent

the Pauli matrices. These gates inherit the properties of Pauli matrices: for example, they anti

commute and are involutory (they are their own inverse), so their square is the identity matrix.

For completeness, we list them below:

I =

1 0

0 1

 → I

X = σx =

0 1

1 0

 → X

Y = σy =

0 −i

i 0

 → Y

Z = σz =

1 0

0 −1

 → Z

It can be interesting to notice that theX gate maps |0⟩ → |1⟩ and |1⟩ → |0⟩ so it is the quantum

analogous of the NOT gate.

Rotation Gates Another class of gates that will be very important in this work is the Rotation

Gates. These represent rotations around one of the three axesX, Y, Z . These form a complete basis

for SU(2), alternative to the Pauli basis, meaning that any gate can, in principle, be decomposed

into rotations. These are defined as:
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RX(θ) = e−i
θ
2
X =

 cos θ
2
−i sin θ

2

−i sin θ
2

cos θ
2

 → RX(θ)

RY (θ) = e−i
θ
2
Y =

cos θ
2
− sin θ

2

sin θ
2

cos θ
2

 → RY (θ)

RZ(θ) = e−i
θ
2
Z =

e−i θ2 0

0 ei
θ
2

 → RZ(θ)

Phase Shift Gates One useful quantum gate is the Phase Shift gate. This is parametrized by

one angle ϕ and is defined as:

P (ϕ) =

1 0

0 eiϕ

 → P (ϕ)

This gate corresponds to a rotation along the z-axis on the Bloch sphere. It maps the basis states

as: |0⟩ → |0⟩ and the |1⟩ → eiϕ |1⟩. It should be noted that the phase shift gate is not Hermitian,

but the relation P †(ϕ) = P (−ϕ) holds instead.

Hadamard Gate A crucial element in quantum computing is the possibility of creating states

that are the superposition of the basis states. This is in practice done by the use of the Hadamard

Gate:

H = 1√
2

1 1

1 −1

 → H

In particular, it maps the basis states to states that have an equal probability of being in either

basis state:

H |0⟩ = 1√
2

1 1

1 −1

 |0⟩ = |0⟩+ |1⟩√
2

(4.6)

H |1⟩ = 1√
2

1 1

1 −1

 |1⟩ = |0⟩ − |1⟩√
2

.

These states, when measured, have 50% probability of being either 0 or 1.
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Controlled Two-Qubit Gates The class of controlled 2-qubit gates is that of operations acting

on two qubits where one of the two is kept constant and is used to determine the weights of the

transformation on the other qubit. For a general 1-qubit operator U , its controlled version is given

by:

CU =



1 0 0 0

0 1 0 0

0 0 u00 u01

0 0 u10 u11


→

U

A particular case is that of the controlled X gates or, as it is most often called, the CNOT gate:

CNOT =



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


→

The CNOT gate flips the state of the target qubit based on the control qubit: if the control is

|0⟩, the target qubit is left unchanged; if the control is |1⟩, then the target is flipped. A key use

of the CNOT gate is to entangle or disentangle two qubits, with the typical example being the

preparation of a Bell State with just a Hadamard and a CNOT:

|0⟩ H

|0⟩
|ψ⟩ = 1√

2
( |00⟩+ |11⟩)

which is a maximally entangled state.

Another gate that we will employ is the Controlled Phase gate, which is simply given by:

CP (ϕ) =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 eiϕ


→

P (ϕ)
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Ising Gates The last class of gates that we present are the so-called Ising Gates. These have

special relevance for physics problems as they are often used in real-time evolution algorithms.

They are two-qubit gates that represent the exponential of pairs of X, Y, Z gats acting on both

qubits. Their definitions are as follows:

RXX(θ) = e−i
θ
2
X1⊗X2 =



cos θ
2

0 0 −i sin θ
2

0 cos θ
2
−i sin θ

2
0

0 −i sin θ
2

0

−i sin θ
2

0 0 cos θ
2


→ RXX(θ)

RY Y (θ) = e−i
θ
2
Y1⊗Y2 =



cos θ
2

0 0 i sin θ
2

0 cos θ
2
−i sin θ

2
0

0 −i sin θ
2

0

i sin θ
2

0 0 cos θ
2


→ RY Y (θ)

RZZ(θ) = e−i
θ
2
Z1⊗Z2 =



e−i
θ
2 0 0 0

0 ei
θ
2 0 0

0 0 ei
θ
2 0

0 0 0 e−i
θ
2


→ RZZ(θ)

These gates are difficult to implement in hardware, so, in practice, a particular decomposition is

often used:

RXX(θ) →
RX(θ)

RY Y (θ) →
RZ(−π

2
) RZ(

π
2
)

RZ(−π
2
) RX(θ) RZ(

π
2
)

RZZ(θ) →
RZ(θ)
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4.1.2 Measurement of Observables

In quantum computing algorithms the wave function is propagated through all the gates, effectively

applying all the corresponding operators. Once the algorithm is finished, the final wave function

is in a superposition of states, whose Hilbert space is defined by the number of qubits used in

the algorithm. When a measurement is performed, each qubit can only return the value of 0 or

1, depending on the state that the wave function collapses on. The reading of an observable is

then a binary string of the size of the number of qubits that are measured simultaneously. The

probability of a given read is given by the amplitudes of the different states in the wave function.

If two or more qubits are entangled, then the measurement of one will affect the state of the other.

A measurement on a given qubit is usually denoted in algorithm diagrams with the symbol:

|q⟩ = a |0⟩+ b |1⟩

quantum state

|0⟩ or |1⟩

classical state

As an example, if the wave function of a 2-qubit system after a series of quantum gates is in

the state:

|ψ⟩ =
√

1

3
|00⟩ −

√
1

2
|01⟩ − i

√
1

6
|10⟩, (4.7)

then a measurement on the two qubits would return 00 with probability p(00) = 1/3, 01 with

p(01) = 1/2 and 10 with p(10) = 1/6. The output 11 would have zero probability from the above

quantum state.

One important thing to consider is that measurements in quantum computing are destructive,

meaning that the quantum state is lost, due to wave function collapse, after measuring. This

has the practical implication that in order to perform any measurement, one needs to repeat the

whole algorithm several times (or perform many “shots” in the jargon) to estimate the relative

probabilities of the final states. This presents an interesting dichotomy: all of the quantum

evolution, through unitary gates as the one we have presented in this section, is fully deterministic,

while the measurement, a non-unitary operation, is a stochastic process.
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4.1.3 Practical Considerations

The current state of quantum simulations for the field of theoretical physics is, as stated previously,

in the phase of developing new tentative algorithms to solve problems. In order to test them, one

has two choices: using a quantum simulator or utilizing physical hardware.

Quantum simulators are programs that translate an algorithm described in terms of qubit

lines and gates to a linear algebra problem, where the size of vectors in the basis is determined

by 2N , where N is the number of qubits. The simulators offer a lot of flexibility, as one can

inspect the wave function state in its entirety along the algorithm, something that we cannot do

on physical hardware. Furthermore, one is free to design custom gates or operations freely. The

drawback is obviously the high computational cost of the simulation and the memory limitations

that effectively limit the number of qubits that one can simulate, but this should be obvious to the

reader as the exponential growth in basis states is the reason to use quantum computers instead

of classical ones in the first place.

The most widely used quantum simulator is probably Qiskit [22], developed and maintained

by IBM. It provides a set of tools to effectively write algorithms and analyze their results. As with

most simulators, it can both allow access to the wave function state or simulate measurement

processes by randomly sampling the state vector given its amplitudes. Another feature that is

worth mentioning is the unified framework that Qiskit offers for executing algorithms on the

quantum hardware by IBM that is made publicly available [23].

While quantum simulators provide a powerful tool for testing algorithms, it is still tempting

for many to try to execute them directly on physical hardware. This is, given the current state

of quantum devices, purely an exercise. In practice, very little, if anything, needs to be changed

in the algorithm to allow it to be executed on quantum hardware, while most systems that are

being simulated are small enough to be fully analyzed either classically or with a simulator. This,

however, is about to change due to the rapid increase in qubit count of machines.
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Noise in Quantum Computing The main difference between quantum simulators and real

hardware is the effect of noise. Physical qubits are susceptible to external perturbations coming

from the external environment. There are multiple factors that add noise to the results of an

algorithm: the first one is the coherence time of the qubits themselves, i.e. the time a qubit can

retain its information without random state changes due to the environment.

The second factor is the “efficiency” of the quantum gates, that is, the level of precision of the

unitary transformations applied to the qubits. In particular, two-qubit gates are hard to construct,

which results in them being the noisiest. A metric that is currently used to describe the length of

a quantum algorithm is, in fact, the count of its CNOT gates, as they impact the total precision

of the algorithm orders of magnitude more than single-qubit gates. The last source of noise in

quantum devices is the measurement process, which has some level of experimental uncertainty

that can lead to false reads of the state of qubits.

For context, the publicly available IBM machines of the Falcon family are quantum systems of

5 or 7 superconducting transmon qubits. Each qubit has a relaxation time of ≈ 100 µs, while the

CNOT gate error of the order of 1% and the readout error is on the level of 3%. The data is taken

directly from [23].

Noise is such a significant issue in current quantum hardware that there is a strong push to

find possible ways to perform “error mitigation” algorithmically, for example, through redundant

encoding or CNOT extrapolations [24, 25], while the Holy Grail of the field would be self-correcting

logical qubits [26, 27], which can be achieved by combining hundreds of noisy qubits together

into one logical unit.

In quantum simulators like Qiskit, there are options to numerically simulate the sources of

noise of the hardware, which allows for better studies of error mitigation mechanisms.

4.1.4 Structure of Quantum Simulations

In an ideal setup, once quantum computers become large enough and noise is under control, a

quantum Hamiltonian simulation would be, in general, structured into three parts: state prepara-
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tion, real-time evolution and measurement. One would first choose a system of interest, for which

a given observable needs to be measured, but whose spectrum of states is not known beforehand.

This is the case of large problems, where exact diagonalization is not feasible classically or for

states coming from interactions.

The first step is then that of state preparation, that is, starting from qubits that are all aligned

to the |0⟩ state (this is the most usual convention on the hardware) and perform the right

transformations to put them in the desired initial state of the system under consideration. This

operation is not trivial, especially when no analytical or numerical data is available on the

given state. In the case where the amplitudes of the wave function (projected onto the binary

basis) are known the controlled-rotation [28], Grover-oracle [29] or the quantum-random-access-

memory [30, 31] methods can be applied among others. When the amplitudes are not known, as

in the case of many physics applications, and just the Hamiltonian is given, one has to rely on

some dynamical algorithms for state preparation. It is important to note that a good algorithm for

state preparation should just be precise, in the sense of efficiently constructing the desired state,

but also short, as not to introduce noise in the rest of the simulation.

Once a state is prepared, quantum simulations can let it evolve in real-time or by applying an

interaction Hamiltonian different from the one used to prepare the initial state. These calculations

are incredibly challenging on classical computers as the sign-problem prevents their effective

numerical simulation.

The final but crucial component of a quantum simulation is obviously the measurement of

observables. This operation is also not trivial to perform in QC as measurements can only be

done on single qubits, which collapse the information of the whole wave function. Some of the

most widely used algorithms are the so-called quantum-classical algorithms and the Variational

Quantum Eigensolver in particular [32, 33], which rely on the variational principle to construct

parametrized quantum states that are optimized with classical algorithms to obtain measurements.

An important topic of research in measurements is that of finding optimal groupings of qubits to

measure, which depend on the level of entanglement of the system and on the observable operator
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itself [34].

The focus of this work and in Sections 4.3 to 4.5 we will present three such methods applied to

the case of the Schwinger Model: the Adiabatic State Preparation (ASP) algorithm, the Quantum

Approximate Optimization Algorithm (QAOA) and the Rodeo Algorithm (RA). We also will only

compare these methods in terms of their algorithm lengths and state preparation efficiency, but

not on secondary observables computed with quantum algorithms because of the overhead they

introduce.

4.2 The Schwinger Model with a θ-term

The Schwinger model is a theory of Quantum Electrodynamics (QED) in 1 + 1 dimensions; its

symmetry group is U(1). First analyzed by Julian Schwinger in a series of papers in the early

50s [35, 36], it was soon utilized as a toy model for understanding properties of more complicated

theories, such as the relation between gauge invariance and the mass of the gauge bosons [37,

38]. Later it was utilized by Coleman to better understand confinement [39, 40], as in the case

of 1 spatial dimension, the electric potential has a linear dependence on the distance between

charged particles —as opposed to inverse in the case of 3 spatial dimensions. This leads to charged

particles being confined to bound states, as is the case for quarks in QCD.

The massless case of the Schwinger model can be solved analytically in the case of periodic

boundary conditions, which makes it a suitable tool for theoretical investigations [41, 42]. In

the case of massive fermions, however, this is not the case, but some results can be obtained

through mass perturbation theory [43–45]. One last peculiar feature of the Schwinger model is

the topological effects given by the coupling of the non-integrable phase to the chiral condensate,

which leads to the well-known θ-vacuum [41, 42]. Some work has also been done in studying

the massive Schwinger model with the addition of a θ-term in the Lagrangian to understand the

vacuum structure of the theory.

In the presence of a topological θ-term its Lagrangian is typically written as:

L = −1

4
FµνF

µν +
gθ

4π
ϵµνF

µν + iψ̄γµ(∂µ + igAµ)ψ −mψ̄ψ, (4.8)
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where Fµν = ∂µAν − ∂νAµ is the field tensor, the Aµ are U(1) gauge fields, and ϵµν is the totally

antisymmetric tensor. In 1 + 1 dimensions, the gamma matrices are γ0 = σz , γ1 = iσy, and

γ5 = γ0γ1. The theory has three parameters—the gauge coupling g, the fermion massm, and the

θ angle.

Following prior works [46], we perform a chiral transformation of the fields ψ → ei
θ
2
γ5ψ,

ψ̄ → ψ̄ei
θ
2
γ5

and the path integral measure [47, 48] to arrive at an equivalent Lagrangian:

L = −1

4
FµνF

µν + iψ̄γµ(∂µ + igAµ)ψ −mψ̄eiθγ5ψ. (4.9)

Note that we have traded the explicit θ-term and its direct relation to the gauge field at the cost of

introducing a θ dependence in the fermion mass term. We choose the temporal gauge A0 = 0,

and then a standard Legendre transform yields the Hamiltonian:

H =

∫
dx

[
−iψ̄γ1(∂1 + igA1)ψ +mψ̄eiθγ5ψ +

1

2
E2

]
, (4.10)

where in one spatial dimension, the electric field E = F 10 = −Ȧ1
has only one component, and

there is no magnetic field. More details about the Legendre transform can be found in Appendix 4A.

To satisfy gauge invariance, additional local constraints that govern the interaction between matter

and gauge fields must be imposed. These constraints, which are provided by the Gauss law, in

the temporal gauge become: ∂1E(x) = gψ̄(x)γ0ψ(x). This equation will become important when

constructing a spin Hamiltonian for use on QC.

4.2.1 Discretization on a Lattice

The continuous Hamiltonian of Equation (4.10) needs to be discretized in order to perform nu-

merical simulations. To do this, we employ Kogut-Susskind staggered fermions [49, 50], following

previous works found in [46, 51–53]. The fermion discretization that we use splits the upper ψu(x)

and lower ψd(x) components of the Dirac fermions and places them on distinct sites of a lattice

that has 2x = n sites, where x is the number of points in a spatial direction before the splitting,

see Figure 4.2.
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Figure 4.2: Schematic representation of the staggered discretization of the fermions at two neigh-

boring lattice sites. A sub-lattice with half spacing introduced and the upper and lower components

of the field are split.

The field ψ(x) is then mapped onto a field χn according to:

χn√
a
↔


ψu(x) for n even

ψd(x) for n odd

(4.11)

We also scale the gauge field by the coupling and relabel the gauge field A1(x) → ϕn
ag

and its

derivative E(x) = Ȧ1(x) → −gLn to be consistent with the notation in other works. The

resulting Hamiltonian is then:

H = −i
N−1∑
n=1

(
1

2a
− (−1)nm

2
θ

)[
χ†
ne
iϕnχn+1 − h.c.

]
+m cos θ

N∑
n=1

(−1)nχ†
nχn +

g2a

2

N−1∑
n=1

L2
n. (4.12)

The field ϕn, the electric potential, lives on the lattice site n, while the field Ln on the link between

sites, just like the U field when we discretized QCD. On the lattice, Gauss’s law is not trivially

derived from discretizing the continuum version ∂1E(x) = gψ̄(x)γ0ψ(x), but one can define it in

the strong-coupling limit by looking at the ground state of the theory, which corresponds to a

“filled Dirac sea” condition. A more detailed discussion is found in [54]. The relevant result for

Gauss’s law is:

Ln − Ln−1 = χ†
nχn −

1− (−1)n

2
. (4.13)

For a given matter configuration, the gauge fields are now completely determined if one fixes

open boundary conditions, i.e. fixing the derivative of the field to 0 at the boundaries. The Ln
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field can, therefore, be reabsorbed in the definition of the fermion fields, as we will see later. It is

important to note that this is only the case for 1 spatial dimension and this cannot be generalized

to higher ones. In practice, this will enable us to only deal with fermionic degrees of freedom

when constructing quantum algorithms, but if the aim is to simulate QCD on a quantum device

eventually, then the problem of finding an appropriate formulation for the gauge degrees of

freedom needs to be addressed. Crucially, since the gauge field is a bosonic field, representing it

onto a fermionic spin-chain is a non-trivial task; this is in sharp contrast with what happens in

classical simulations, where bosons are simpler than fermions to deal with.

In deriving this Hamiltonian, some care has been put into expanding terms to higher orders

in a and shifting some terms by one site, utilizing the properties of staggered fermions to only

have terms that either contain the field χ at one same site or at neighboring sites, more details are

found in Appendix 4A. These “hopping terms”, that are symmetric with respect to the two fermion

species, allow us to treat the upper and lower component of the original ψ field identically. This is

done because we want to map the Schwinger model onto an Ising-like spin Hamiltonian, as we

will see in the next section.

4.2.2 The Spin Hamiltonian of the Schwinger Model

All Hamiltonians that need to be simulated on quantum computers eventually have to be mapped

onto a spin chain, because of the fundamental structure of quantum devices. Luckily, there exists

a very simple procedure to map a Hamiltonian formulated in second quantization, that is, with the

creation and annihilation operators, to a spin system preserving all the necessary anti-symmetry

properties: the Jordan-Wigner transformation [55] This takes the operators of a fermion field, χn

in our case and maps them onto a chain of operators on a chain of spins, one per lattice site:

χn =

(∏
l<n

−iZl

)
Xn − iYn

2
χ†
n =

(∏
l<n

−iZl

)
Xn + iYn

2
, (4.14)

where Pauli matrices act on the spin variables located at each lattice point n, and we used the

shorthand notation Xi = σxi , Yi = σyi , Zi = σzi .
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If open boundary conditions are introduced, i.e. the conjugate momentum L at the boundary

is fixed, one can solve Gauss’s law from Equation (4.13) and obtain:

Ln = L0 +
1

2

n∑
l=1

(
Zl + (−1)l

)
, (4.15)

where the value of L0 specifies the boundary conditions. The constant L0 is redundant, as it can

be reabsorbed into the θ angle shifting it by 2πL0 [40] without changing the theory; thus, we can

safely set L0 = 0. The last component of the gauge field, the potential ϕ phases, can be absorbed

into the fermion fields instead by a gauge transformation χn →
∏

l<n[e
−iϕn ]χn without loss of

generality. We then have only fermionic degrees of freedom in our Hamiltonian.

The final Hamiltonian to be implemented in the quantum algorithm can then be derived

by applying the Jordan-Wigner transformation to the χn and χ†
n fields, see Appendix 4A for

the full details, and omitting constant terms it can be decomposed as the sum of three terms

H = HZZ +H± +HZ , where:

HZZ =
J

2

N−1∑
n=2

∑
1≤k<l≤n

ZkZl

H± =
1

2

N−1∑
n=1

(
w − (−1)nm

2
sin θ

)
[XnXn+1 + YnYn+1] (4.16)

HZ =
m cos θ

2

N∑
n=1

(−1)nZn −
J

2

N−1∑
n=1

(n mod 2)
n∑
l=1

Zl.

For consistency of notation with [53], we introduced the scaled couplings w = 1/(2a) and

J = g2a/2. The Hamiltonian only has four free physical parameters: m, θ, w and J . By inspecting

the Hamiltonian it is easy to see that the HZ term is diagonal, while H± is only linking nearest-

neighboring qubits. On the contrary,HZZ is an all-to-all term, i.e. it is non-local. The origin of this

is the elimination of the gauge field by using Gauss’s law and open boundary conditions, which

removes the gauge degrees of freedom at the cost of locality. Hence, the scaling of any quantum

algorithm containing this Hamiltonian is not linear with the size of the system, but quadratic.

For further reference, it is also interesting to count the number of CNOT gates that an algorithm

that implements Equation (4.16) is composed of. In particular, we are interested in looking at time
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evolution operators with this Hamiltonian. In order to do this one must consider the operator

U(t, t + δt) = exp(−iHδt), with δt being some time difference. Since not all terms in the

Hamiltonian commute with each other, it cannot be simply exponentiated. In fact, one has to use

the formula by Sophus Lie for the exponential of a sum of matrices:

exp[it(A+B)] = lim
n→∞

[exp(itA/n) exp(itB/n)]n, (4.17)

this is also more commonly known as the Trotter formula. In practice, one cannot calculate all

terms of the equation, so one has to truncate the product under the assumption that t, or δt in

our case, is small. This leads to the so-called Trotter-Suzuki formulas for the expansion of the

exponentials [56]. For the simulation of the Schwinger Hamiltonian we split it into three terms:

HX , HY and HZ , where each contains only the corresponding operators; this is just a regrouping

of the terms of Equation (4.16). With these three terms, which all commute with each other, one

can use different orders of the Trotter-Suzuki formula to approximate the time-evolution operator.

In particular, we used:

U(t, t+ δt) = e−iH(t)δt ≈ e−iHX(t)δte−iHY (t)δte−iHZ(t)δt +O(δt2), (4.18)

U(t, t+ δt) = e−iH(t)δt ≈ e−iHX(t) δt
2 e−iHY (t) δt

2 e−iHZ(t)δte−iHY (t) δt
2 e−iHX(t) δt

2 +O(δt3),

for the first- and second-order formulas. As in regular numerical integration, the total error,

when simulating from t = 0 to T is of one power of δt more, so O(δt) and O(δt2) respectively.

With these approximations, we can now see immediately that implementing the time evolution

operator is trivial with the Ising gates defined in Section 4.1.1 and we can thus conclude that for

the first-order Trotter formula, the number of CNOT gates needed is 4(N − 1) + (N − 1)(N − 2),

where the first term comes from the HX and HY terms in the Hamiltonian, while the latter part

comes fromHZ . For the second-order Trotter-Suzuki approximation, since we have placed theHZ

term in the middle, the count of CNOT gates is simply: 8(N − 1)+ (N − 1)(N − 2). In the simple

cases of N = 4, 8, which we will consider in the following sections, the number of gates are then:
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N 1st Order 2nd Order

4 18 30
8 70 98

4.3 Adiabatic State Preparation

The Adiabatic State Preparation (ASP) is a common reference when dealing with state preparation

algorithms, because of its relative simplicity and robustness. The algorithm allows initializing

a set of qubits to the ground state of a chosen “target” Hamiltonian H , without the need of any

additional qubit. What is needed instead is to find a “simple” initial HamiltonianH0 with a ground

state that is trivially solvable and easy to construct on a quantum computer. H0 should be related

to the full target one in such a way that a set of coefficients can be used to interpolate between

them.

The Adiabatic Theorem is well-known fact in quantum mechanics, with its roots in the early

times of the theory [57]. It states that for a system governed by a time-dependent HamiltonianH(t)

a state prepared in one of its eigenstates at t = 0, so that |ψ(0)⟩ = |ϵi(0)⟩ will approximately

remain in the corresponding instantaneous eigenstate |ψ(t)⟩ = |ϵi(t)⟩ of the Hamiltonian

provided that H(t) varies “sufficiently slowly”. In the case of the evolution to a finite time T , the

adiabatic theorem becomes approximate and there an adiabatic condition has been formulated [58,

59] that needs to be satisfied for the final state to be in an eigenstate of the Hamiltonian. This

condition, after introducing the scaled time s = t/T , reads:

1

T
max
s∈[0,1]

|⟨ϵi(s)| ∂sH(s) |ϵj(s)⟩|
|ϵi(s)− ϵj(s)|2

≪ 1 (4.19)

The adiabatic condition then is satisfied if there is a sufficiently large energy gap between the state

of interest and the neighboring ones and if the total time evolution is large. The derivative term is

assumed to be small for a well-behaved Hamiltonian [59], so we will not consider it in this analysis.

In the case of the ground state (GS), if we call∆(s) = ϵ1(s)− ϵ0(s) the difference between the first

excited state energy and the GS energy, the adiabatic condition is, for a well-behaved Hamiltonian,
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roughly:

1

T∆2(s)
≪ 1 (4.20)

ASP works by applying a set of adiabatic time evolution operators, each with a different

Hamiltonian, which comes from the discretization of an interpolation between H0 and H , so that

the instantaneous operator isH(s) = a(s)H0+ b(s)H where the time-dependent coefficients a(s)

and b(s) are monotonically decreasing and increasing respectively. This allows the state to evolve

towards the desired target ground state by always remaining close to the ground state of the

interpolation of the Hamiltonians at all time steps. More rigorous versions of this condition have

been formulated, with more stringent bounds depending on the properties of the Hamiltonian [60,

61].

In the case of the Schwinger model, we choose the initial Hamiltonian:

H0 = HZZ +HZ |m→m0,θ→0, (4.21)

whose ground state is a state of alternating up and down spins. The parameters of the Hamiltonian,

w = 1
2a
, θ and m, are rewritten to be adiabatic time-dependent, while the coupling parameter

J = g2a/2 is kept constant:

w → tn
T
w θ → tn

T
θ m→

(
1− tn

T

)
m0 +

tn
T
m, (4.22)

for a set of M + 1 values of tn = tn−1 + δtn with, naturally, t0 = 0. The set of time intervals

δt1, δt2 . . . δtN has to satisfy: T =
∑M

n=1 δtn. The simplest discretization is a linear one, corre-

sponding to taking all δtn to be the same and hence tn = n T
M

= nδt, but other non-uniform

values for δtn can be chosen as we will discuss later.

To perform the state preparation one first defines an adiabatic time evolution operator U(t, t+

δt) = e−iH(t)δt
. We label the linear discretization of the adiabatic evolution L1 or L2 depending

on the order of the Trotter product formula, see Section 4.2.2, we use to evaluate the evolution

U(t) = e−iHA(t)δt
, which intuitively correspond to the order of the integration scheme from t to

t+ δt. The other discretizations used in this work are sin2
or cos2 spacing for the time:

δtn = 2
T

M
sin2

(
π
n

M

)
n = 0, . . . ,M, (4.23)
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δtn = 2
T

M
cos2

(
π
n

2M

)
n = 0, . . . ,M, (4.24)

which we call respectively S1, S2 for the sine and C1, C2 for the cosine, where again the number

corresponds to whether for the adiabatic time evolution operator we use a first order or a second

order Trotter product formula.

4.3.1 Numerical Results

For clarity of exposition, since there are several free parameters in the model, we restricted our anal-

ysis to the following combinations: (m,m0, w, J, θ) = (0, 0.5, 0.5, 0.5, 0) and (1, 0.5, 0.5, 0.5, π/4).

This is the massless case, but starting from a non-zero mass in the simple Hamiltonian, unit lattice

spacing and coupling and vanishing θ and the other is a massive case with a non-zero topological

angle. We also considered two sizes of the system: N = 4 and N = 8.

The first numerical test that we considered to understand if the ASP could be used at all, was

to compute the spectrum of the Hamiltonian as a function of the scaled time s = t/T . In Figure 4.3

we plot the spectrum and in Table 4.1 we report the minimum values for ∆(s). The spectrum

is calculated by numerically diagonalizing the interpolating Hamiltonian for every value of s.

Curiously, for the analysis of the algorithm, the massless case with θ = 0 is more interesting

because of the smaller gap along the adiabatic evolution.
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Figure 4.3: Spectrum of the Schwinger model for N = 4 with (θ,m) = (0, 0) (left) and (θ,m) =
(π/4, 1) (right).
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N (θ,m) = (0, 0) (θ,m) = (π/4, 1)
4 0.208 0.5
8 0.185 0.5

Table 4.1: Values for the minimum energy difference between the first excited state and the ground

state mins∈[0,1]∆(s) = mins∈[0,1] (ϵ1(s)− ϵ0(s)).

On a classical computer, we can simulate the quantum algorithm for the ASP and perform a

study of how the choice for the discretization and the total time of evolution T affect the quality

of the ground state that is prepared. We focus in particular on two quantities as metrics for

our algorithms: the energy expectation value, and its relative error to the exact result, and on

the overlap S = | ⟨ψ|ψE⟩ |2 of the final state with the exact ground state |ψE⟩ computed from

diagonalization.

There are then four parameters that can affect the quality of the end state from ASP for a

given set of physical parameters: the total time of simulation T , which controls the quality of the

adiabatic approximation; the number of discretization pointM , which affects the size of the error

made in the approximation of the time-evolution operator; the type of discretization used, we

considered linear, sine or cosine; and the order of the Trotter formula.

For quantum simulations, the choice of the discretization does not impact the final length, in

terms of gates, of the algorithm, so it can be set freely. On the contrary, a larger value of T would

necessitate a large number ofM as well to preserve the error in the Trotter formula small, as

it depends on δt, making the algorithm longer. The choice of the Trotter order also affects the

length of the algorithm as it requires twice as many gates to perform a single time evolution step.

In Figure 4.4, we report the results of the relative error of the GS energy for varying values of

T for the linear discretization for different values ofM and δt and Trotter order.

One important thing to notice is that the error, for large very M/T , i.e. for small δt has a

plateau after 10 irrespective of the order in the Trotter formula for discretization. The error in

that regime is, in fact, given by the adiabatic approximation and not by the discretization. We

can also understand it by the fact that the plateaus have lower values for increasing T . From the
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Figure 4.4: Relative error of a quantum simulation of ASP for a N = 4 system with J = 0.5,
m0 = 0.5,m = 0, w = 0.5, θ = 0. The different points correspond to different parameters of the

algorithm, in particular the order of the Trotter formula, the total time of simulation T and the

number of stepsM .

figure, one can also infer that with most combinations of parameters, the error on the GS energy

is always very small, showing the effectiveness of ASP as a state preparation algorithm for this

particular system.

From the plot of Figure 4.4 a curious phenomenon appears when looking at the behavior of

the relative error as the order of the Trotter formula is changed. Clearly, for larger δt higher order

give better results, but then as δt decreases, it appears that the first order approximation is better.

However, from the top figure, we can see that for very small δt, the two discretizations eventually

converge. It appears then that the “better” converge to the solution of the first order Trotter results

for intermediate values of δt is somewhat incidental.

As an extreme case, we show in Figure 4.5 the results for the energy and the overlap with

the ground state for the case of justM = 10 and T = 5. With these parameters, the adiabatic

approximation clearly cannot hold, yet the ASP is still able to prepare a GS that has more than
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95% overlap with the true ground state and for certain discretizations, the difference is smaller

that 1%. It should be noted even in this scenario the resulting algorithm is very long in terms of

what can be simulated on current quantum hardware. By the data of Section 4.2.2, we can infer

that even in the N = 4 first-order Trotter case, the ASP algorithm is 180 CNOT gates long with

this Hamiltonian.
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Figure 4.5: Simulation of ASP of a N = 4 system with J = 0.5, m0 = 0.5, m = 0, w = 0.5,
θ = 0. The different series represent different adiabatic time discretizations and with different

Trotterization scheme orders. The simulation is done using the Qiskit package from IBM. The

data is for the energy of the system (left) and for the final state overlap with the true ground

state (right). The exact line represents the results obtained from the exact diagonalization of the

adiabatic Hamiltonian at every time point.

One interesting consideration that one can draw is that in the cases of cosine spacing, the

data seems to be in better agreement, hinting that it is beneficial to perform more precise steps

towards the end of the evolution, where the Hamiltonian is closer to the target one. Also, it is

important to notice that the overlap is always within 10% from the exact ground state, meaning

that the evolution is, in fact, keeping the state close to the intermediate ground state throughout

the process.

4.3.2 Noise Model for Adiabatic State Preparation

One of the largest limitations of ASP is the long algorithm resulting from the adiabatic time evo-

lution discretization. On NISQ machines, such algorithms easily become prohibitively expensive
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because they contain several CNOT gates which have relatively high error rates. Using the tools

provided by Qiskit, we performed a set of simulations in which the error rate of the CNOT gates

was changed using the simple setup that we described in the previous section, i.e. M = 10 and

T = 5, with the best discretization we found: C1. The intent is to determine what CNOT gate

error rate would allow the ASP algorithm to give a good estimate of the ground state of theN = 4

Schwinger model. In fact, there is a big discrepancy between the noiseless and the results for

error rates of 10−3
already after one single step of the adiabatic time evolution. Qiskit allows the

execution of a quantum algorithm with a custom “noise model”, which means that at every step

of the algorithm a parametrized random error is introduced to simulate the effect of the hardware

noise. In this particular case, we changed the value of the 2-qubit error parameter. Remembering

that the current NISQ hardware has error rates that are in the range 10−3 − 10−2
, it is easy to

check from Figure 4.6 that the noise prevents the algorithm from producing a good quality state

on a real machine in the already fragile setup we are considering.

A common technique used in quantum simulations is zero-noise extrapolation [24, 25], which

consists in artificially increasing the length of the algorithm by introducing pairs of CNOT gates.

These pairs leave the result unaffected in principle, the square of the CNOT operator is the identity,

but only increase the noise coming from the two-qubit gate error rate. By repeating the procedure

with an increasing number of CNOT pairs, one can then perform an extrapolation to remove all

the contributions from the two-qubit gates. However, from Figure 4.7, one can observe that an

extrapolation performed this way would lead to wrong results. In the figure, we observe that the

two-qubit gate error rate affects the results for the energy at low precision, but for very large

values, and crucially in the region of current hardware levels, the energy tends to 0, i.e. the state

is pure noise.

From this analysis, we can conclude that ASP is not yet a practical algorithm for state prepara-

tion for the Schwinger model on real quantum hardware due to the constraints set by the noise of

the machines. Even in the case of very short time evolutions, in which the error coming from the

adiabatic approximation is small but not negligible, like the one we presented for T = 5, current
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Figure 4.6: Ground state energy from ASP with varying CNOT error rate in the same setup

as Figure 4.5 for linear first order Totter. Error bars represent the standard error coming from

performing 10000 shots of the algorithm. The points have been shifted from the true t coordinate

for clarity.

noise levels render ASP completely unfeasible. From our results, it appears that at least one order

of magnitude decrease in two-qubit error rates, down to below 10−4
, is needed in order for ASP to

become effective.

4.4 Quantum Approximate Optimization Algorithm

The Quantum Approximate Optimization Algorithm (QAOA) [62] is a well-known algorithm for

optimization problems. However, using the variational principle, one can turn the QAOA into

a hybrid classical-quantum algorithm for state preparation. It has the advantage of producing

relatively short algorithms with a small number of parameters.

Just as ASP, it relies on the existence of a trivially solvable Hamiltonian H0 with eigenstate
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Figure 4.7: Ground state energy from ASP with varying CNOT error rate in the same setup as

Figure 4.5 at the final time point t = 5. The shaded area represents the current typical error-rates.

|ψ0⟩ from which, with a set of unitary transformations, and approximation of the ground state

of H , the target Hamiltonian. One then makes the QAOA ansatz for the eigenstate of the target

Hamiltonian:

|ψM(γ⃗, β⃗)⟩ =

(
M−1∏
k=0

e−iβM−kH0e−iγM−kH

)
|ψ0⟩ (4.25)

which depends on the 2M real coefficients β⃗, γ⃗. The variational principle applied to this ansatz

reads:

⟨ψM(γ⃗, β⃗)| H |ψM(γ⃗, β⃗)⟩ = EV
0 ≥ E0, (4.26)

where E0 is the true ground state of the system, which means that we can use a minimization

algorithm to find the optimal values γ⃗∗ and β⃗∗
such that |ψM(γ⃗∗, β⃗∗)⟩ minimizes the energy

EV
0 . In our case, we used simulated annealing [63] as a minimizer because it can deal with the

many parameters and multiple local minima of the problem, thanks to the stochastic nature of the
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algorithm. The minimization we performed was a fully classical computation, but in principle, one

can use a hybrid algorithm, which consists in calculating the expectation values on a quantum

device with the parameters at every step in the minimization algorithm determined on a classical

computer based on the results of the quantum simulation. However, given the high noise levels

of current QC this is not possible in practice. So the minimization was setup to use a trotterized

version of the unitary transformations to more closely represent the quantum hardware.

One of the convenient advantages of the QAOA method for state preparation is that one is

free to choose the number of stepsM in the ansatz without any other limitation other than the

successful convergence of the minimizer. This clearly leads to short quantum algorithms. There is

one caveat, though, that is if the magnitude of one of the coefficients γ⃗ or β⃗ is large, and since the

time evolution operator needs to be Trotterized, there could be an error introduced as opposed

to the optimal case. For this reason, while minimizing, one can add the further constraint of

requiring all coefficients to be below a certain maximum value. If this cannot be satisfied by the

minimizer, then a larger number of stepsM is required.

4.4.1 QAOA Results

The quality of the state prepared by QAOA depends on the optimal coefficients that are found.

In the case of the Schwinger model, with the same parameters we used in Section 4.3, so

(m,m0, w, J, θ) = (0, 0.5, 0.5, 0.5, 0) and (1, 0.5, 0.5, 0.5, π/4), the results for the energy expec-

tation value of the ground state and the ground state overlap are reported in Table 4.2 for two

values of the number of QAOA steps. All results are for second order Trotter formula.

From the table, we can observe that QAOA is extremely efficient at preparing the ground

state and at estimating its energy. It also does it with extremely few CNOT gates when compared

to ASP. Consider that for theM = 10 case of ASP, the number of CNOT gates per qubit, with

the second order approximation, is 75 for N = 4 and 245 for N = 8, with also less accurate

results. The downside of QAOA is the minimization process. This can be done accurately on a

classical machine running a simulator when the system sizes are small enough to allow exact
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Method N (θ,m) M CNOT/qubit Rel. Err. E0 GS Overlap

QAOA 4 (0, 0) 2 12 0.0029 0.9975
QAOA 4 (0, 0) 3 18 0.0041 0.9968
QAOA 4 (π/4, 1) 2 12 0.00045 0.9996
QAOA 4 (π/4, 1) 3 18 0.0031 0.9971
QAOA 8 (0, 0) 2 28 0.0089 0.9701
QAOA 8 (0, 0) 3 42 0.0068 0.9846
QAOA 8 (π/4, 1) 2 28 0.00047 0.9988
QAOA 8 (π/4, 1) 3 42 0.00040 0.9989

Table 4.2: Results for the QAOA method for varying system sizes and parameters with first order

Trotter formula.

exponentiation, and even then, some combination of parameters such as (θ,m) = (0, 0) in the

N = 8 case are not highly optimized. There is, however, no guarantee that this process could be

done effectively in the hybrid computation scenario with NISQ machines. Furthermore, in our

results, because of the stochasticity of simulated annealing different reruns of the minimization

algorithm led to slightly different results, so the values reported in table are the averages of 5

runs of the optimizer. The difference between the runs, however, does not change the qualitative

conclusions that we can draw when comparing QAOA with ASP, as they are orders of magnitude

better for comparable algorithm lengths. To summarize, the results clearly show that once the

optimal coefficients γ⃗∗, β⃗∗
are known, QAOA can prepare the GS more effectively than ASP.

4.4.2 Blocked QAOA

One option to decrease the number of CNOT gates per qubit even further would be to use custom

optimized 2-qubit gates [64], which can be constructed for any unitary operation on two qubits.

However, since the Hamiltonian in Equation (4.16) is non-local due to the HZZ term, this cannot

be done trivially. The QAOA algorithm, nevertheless, since it relies on a rather general ansatz,

can still be applied to this case. The solution we propose to deal with the non-local term is to

define a modified Hamiltonian HB , which we will call “blocked”, where only the diagonal and

nearest-neighbor terms of the full Hamiltonian are kept, so HB = H± +HZ +H ′
ZZ , and that can

in principle be represented as a single 2-qubit gate. H ′
ZZ is only the local part of HZZ . We then
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modify the QAOA ansatz to:

|ψM(γ⃗, β⃗)⟩ = e−iβMH0e−iγMH

(
M−1∏
k=1

e−iβM−kH0e−iγM−kHB

)
|ψ0⟩ (4.27)

where the firstM − 1 unitary application contain the HB while only one application of the full

Hamiltonian is applied on the last step. The rationale is then to encode as much as possible of

the nearest-neighbor interactions through the blocked Hamiltonian, while the last step “corrects”

for non-local effects. This can only be applicable in the parameter region where HZZ , which

contains the non-local terms, is not the dominant term of the Hamiltonian, so we are consequently

constrained to the case where J is not large. The results for this blocked approach, for the N = 4

case, can be found in Table 4.3; the results for N = 8 are qualitatively similar, so are not reported.

Method N (θ,m) # of Steps # of CNOT/ qubit Rel. Err. E0 GS Overlap

QAOA 4 (0, 0) 2 11 0.0073 0.9906
QAOA 4 (0, 0) 3 16 0.0043 0.9960
QAOA 4 (π/4, 1) 2 11 0.00022 0.99973
QAOA 4 (π/4, 1) 3 16 0.00026 0.99969

Table 4.3: Blocked QAOA results for N = 4.

The gain in terms of CNOT gates is more apparent for larger N , obviously. As a side conse-

quence of the blocking procedure is the possibility of scaling the system size while keeping the

optimal parameters γ⃗ or β⃗ fixed as N changes. This is not perfect, as the non-local part of the

Hamiltonian is obviously changing, but it leads to surprisingly good ansätze for larger systems

without expensive minimization runs. In Table 4.4, we show results for different system sizes with

the same QAOA parameters determined with simulated annealing on the N = 4 system for the

(θ,m) = (0, 0) case and three steps, two of which are blocked and the last one is done with the

full Hamiltonian.

As the data shows, blocked QAOA can be used as an extremely cheap starting point for further

optimizations or other state preparation algorithms in the case of large N .
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N # CNOT/qubit Rel. Err. E0 GS Overlap

4∗ 16 0.0043 0.9960
6 22 0.0083 0.9820
8 27 0.0168 0.9387
10 32 0.0231 0.8795

Table 4.4: QAOA Blocked with M = 3 steps. The results for the N = 4 are obtained after

parameter optimization; the results for N = 6, 8, 10 have been computed using the same optimal

parameters for N = 4.

4.5 The Rodeo Algorithm

The recently proposed Rodeo Algorithm (RA) [65–67] is a promising method that uses a stochastic

cosine filter to isolate eigenstates of a givenHamiltonian, so it can also be used as a state preparation

algorithm. The method relies on a series of controlled time evolution operators acting on a series

of ancilla qubits. The final state of the ancilla qubits, when measured, can be used to assess the

overlap of the initial state with an energy eigenstate. A schematic representation is given in

Figure 4.8.

Figure 4.8: Circuit diagram for the Rodeo Algorithm.

One of the simplest applications of the RA is that of finding the overlap of a given state |ψI⟩

with the eigenvalues of a given object Hamiltonian Hobj. To do this, one first selects a set of

energies Ei ∈ [Emin, Emax] and for each energy one run of the algorithm is performed, thus
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performing as “scan” for the energy values. At the start of each run, for a fixed energy Ei, an

initial state of N qubits |ψI⟩ is prepared, this has to be a trivial operation, and another set ofM

ancilla qubits are all initialized to the fully mixed state with a Hadamard gate. The algorithm then

consists of performing a controlled time evolution with the desired object Hamiltonian Hobj for a

time t using one ancilla qubit and then applying a phase gate P with angle Eit, a Hadamard and

measuring the qubit. This chain of operators is applied to each ancilla qubit.

The action of the algorithm, for a single ancilla qubit, can be written in matrix form as: I√
2

I√
2

I√
2

−I√
2


I 0

0 eiEit


I 0

0 Ie−iHobjt


 I√

2
I√
2

I√
2

−I√
2


 0

|ψI⟩

 (4.28)

from which the probability of an ancilla qubit to be in the state |1⟩ for each eigenvalue ϵj of the

Hamiltonian can be calculated to be:

cos2
[
(ϵj − Ei)

t

2

]
=

∣∣∣∣12 +
1

2
e−it(ϵj−Ei)

∣∣∣∣ (4.29)

The probability for a set ofM ancilla qubits, on which the same operations of Equation (4.28) are

applied each with a different random value for the time t1, t2, . . . , tM is:

PM =
M∏
m=1

cos2
[
(ϵj − Ei)

t

2

]
(4.30)

which is a cosine filter which suppresses values of Ei ̸= ϵj by a factor of
1

4M
. The randomness of

the choice of t is introduced to cancel potential constructive interference away from ϵj .

In practice, one performs a series of iterations of the rodeo algorithm, i.e. choosingM random

values for the time and measuring the probability of all the ancilla qubits being |1⟩, by drawing

S samples ofM Gaussianly distributed values for t with some fixed root-mean-squared value,

which effectively controls the sharpness of the filtering. This is then repeated for all values of Ei.

In Figure 4.9, we show the results for the Schwinger model with N = 4, 8 qubits for a set

of numbers of ancilla qubits, or “cycles” of the RA algorithm. The results are for 200 values

of the energy Ei with S = 20 random time samples per value. The exact results come from

diagonalization and the initial state is the alternating spin chain that was also used in the previous
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methods. In the largest case, the simulation containsM +N = 17 qubits, but this is not possible

to run easily using Qiskit on a regular machine due to memory limitations. The choices were then

to either perform the calculation on an HPC center or, the path we chose, to write a custom, less

general but more optimized simulator for the rodeo algorithm. This custom simulator can be used

with any Hamiltonian and can easily simulate up to 20 qubits, considering the sum of both ancilla

and system ones.

The results of Figure 4.9 clearly show the effectiveness of the RA in identifying the eigenvalues

of Hobj and the overlap of |ψI⟩ with them. One important consideration is that asM increases,

the value of the overlap factors approaches their true value strictly from above. This is due to the

constant 1/2M baseline coming from Equation (4.30), which we can also see decreasing constant

noise level on the plot for energies far away from the eigenvalues. The baseline comes from the

random chance of having all the ancilla qubits being in the |1⟩ state, with no relation to the RA

at all. The width of the peaks is, as stated before, controlled by the random distribution of the

values of t, so there is a trade-off between the resolution and the accuracy of determination of the

central value.

It should be noted that the controlled time evolution is not a trivial operation on a quantum

computer because it requires substituting all CNOT gates in the regular time evolution to the

so-called Toffoli gates [68]. These are the extension of the CNOT gates to the three-qubit case (or

more if made more general) and it is sometimes called the CCNOT gate. On most hardware there

is no method to apply three-qubit operations, so to get a realistic estimate of the length of the

algorithm one needs to substitute all the Toffoli gates with their decomposition into Hadamard,

phase gates and CNOT gates. In particular, one three-qubit Toffoli gate can be decomposed using

5 CNOTs [69]. To circumvent the problem of dealing with three-qubit gates in the RA it has been

proposed in [66] to modify the algorithm with the use of a pairs of controlled reversal gates, one

for each commuting piece of the Hamiltonian. This method can greatly reduce the length of the

RA.

Another thing to consider when analyzing the length of the RA is the need to use a Trotter
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Figure 4.9: Spectral overlap factors for the |1010⟩ initial state from the RA for the Schwinger

model with parameters (m,m0, w, J, θ) = (0, 0.5, 0.5, 0.5, 0). The exact results come from diago-

nalization of the Hamiltonian.
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approximation of the time evolution operator. This is needed because of the large values needed

for trms. The parameter controls the width of the peaks of the energy scanning procedure, as

it enhances the filtering effect of Equation (4.30). In principle one could use very large trms to

increase the resolution, but the downside is the increased length of the algorithm. The number

of Trotter steps and the optimal δt can be inferred by our analysis of ASP, as the setup is similar

when looking only at one ancilla qubit. In Figure 4.10 we show the effect of changing trms and how

one can easily extract the energy eigenvalue by a Gaussian fit of the data around the peak. The

relative error of the estimated energy and the exact value is 1.06−6
, this shows the high efficiency

and conceptual simplicity of the RA for determining the spectrum of system.
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Figure 4.10: RA results for the ground state of the N = 8 system for different values of trms. A

Gaussian fit to the data with the largest trms is shown in purple and the fit result of the central

value in black.
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4.5.1 Rodeo Algorithm for State Preparation

The RA can be extremely beneficial as an algorithm for state preparation because it allows

preparing with ease excited states. In practice, one first needs to extract the eigenvalue from a

Gaussian fit around a peak in the spectrum, then use the precisely determined value for the energy

as the phase for the RA, as an iteration of the algorithm at this fixed energy value will then return

the desired eigenstate if the ancilla qubits are all measured to be in the |1⟩ state. Otherwise the

state has to be discarded.

There are two main drawbacks of the RA as a state preparation algorithm. The first obvious

one is the length of the algorithm, given by the multiple time evolutions of length ≈ trms that

need to be performed. When accounting for Toffoli gates, or the the more efficient controlled

reversal gates method, the length of the algorithm far exceeds that of ASP. For this reason we do

not report results for the relative error or the GS overlap obtained from the RA as it would be

difficult to make a fair comparison with the methods presented in the two previous sections.

The second issue with the RA for state preparation is the efficiency: by construction, only

quantum simulations where the ancilla qubits are measured to be |1⟩ are in the desired state,

which implies that if the initial state |ψI⟩ has a low overlap with the desired state to be prepared

then a very small number of runs in the simulations are actually useful and all the rest are to

be discarded. One then must take extreme care in the choice of the initial state to maximize

the output efficiency of the RA. Another possibility to enhance the efficiency is that of utilizing

another algorithm for state preparation as a “preconditioner” for the RA, which would then be

used to improve the results further. This would, however, limit the usage of the RA to the states

accessible by the preconditioner.

In general, the RA is a promising algorithm for determining the energy spectrum of a theory

and for state preparation. While the first task can be accomplished also on NISQ machines because

of the relative ease of identifying the peaks of the spectrum even with low trms, the latter requires

very long algorithms and is currently impractical, at least for the case of the Schwinger model

that we have analyzed. Once the length of quantum algorithms will not be a limiting factor, the
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RA will become a potential candidate for state preparation, especially for excited stated.
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4.6 Comparison of Algorithms and Conclusions

When comparing the three algorithms we presented for state preparation of the Schwinger

Hamiltonian, each presents strengths and weaknesses. ASP is the most straightforward algorithm

to implement and has a long history of studies that can help understand when it can be safely

applied. However, it has the major downside of leading to extremely long algorithms, which

is a problem on NISQ machines. Once arbitrarily long algorithms will be enabled by hardware

improvements, ASP could be used as a benchmark for other methods.

The QAOA method is very promising for its extremely short algorithms when compared to

ASP or the RA. On current machines, it still is not applicable for the Schwinger model, but it in the

foreseeable future it can become of use. The quality of the results is also much better than ASP,

though it relies on one’s ability to perform the minimization correctly. There could be systems for

which the variational minimization performed with simulated annealing might fail to find a local

minimum that is sufficiently close to the ground state for QAOA to be useful. This also shows

another problem with the method, which is the need for prior knowledge of the true ground state

to determine whether the minimizer actually converged, otherwise one cannot discern a local

minimum. On systems where exact diagonalization or a Trotterized simulation is not possible to

be done classically, one needs to rely on a hybrid algorithm, with the expectation values computed

via quantum hardware. While this is an exciting prospect for QC in general, for the purpose of

accurately preparing a state for further studies, this could be a limitation to the applicability of

the method until such hybrid minimization become very accurate as well.

The Rodeo Algorithm has the clear advantage over ASP and QAOA of being able to not only

prepare the ground state. The precision of the algorithm is also remarkable, as long as sufficiently

large values for trms in the controlled time evolution are chosen. This shows one of the limitations

of RA for NISQ machines: the very long length of the algorithms. Some methods for reducing

the algorithm length are already being studied and since the RA has been proposed only very

recently, in the future there could be significant improvements.

Going forward, the study of the Schwinger model can be a useful benchmark for LFT on
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near-term quantum hardware, in a similar way as it was when the first numerical studies were

performed on classical hardware. In order to be able to simulate QCD on a lattice using quantum

computers, there are two main challenges to address: the representation of the SU(3) symmetry

group on qubits and the dimensionality of the lattice, which are two things that the toy model we

presented here did not require.
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APPENDIX 4A

DISCRETIZATION OF THE SCHWINGER MODEL HAMILTONIAN ON A LATTICE

4A.1 Definitions

We assume the following conventions for the gamma matrices and the metric tensor in 1 + 1

dimensions:

γ0 = σ3 =

1 0

0 −1

 , (4A.1)

γ1 = iσ2 = i

0 −i

i 0

 =

 0 1

−1 0

 , (4A.2)

γ5 = γ0γ1 =

1 0

0 −1


 0 1

−1 0

 =

0 1

1 0

 . (4A.3)

In Minkowski space, the gamma matrices are defined by the anti-commutator

{γµ, γν} = 2ηµν , (4A.4)

so the metric tensor ηµν with the choice of gamma matrices above is:

ηµν =

1 0

0 −1

 . (4A.5)

4A.2 Chiral Transformation

Start with Lagrangian for the Schwinger model with a θ-term from Equation (4.8)

L = −1

4
FµνF

µν +
gθ

4π
ϵµνF

µν + iψγµ (∂µ + igAµ)ψ −mψψ. (4A.6)
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We want to perform a global chiral transformation of the fermion fields in order to remove the

free-standing θ-term. The transformation is: ψ → ei
θ
2
γ5ψ for the field ψ and ψ → ψei

θ
2
γ5
for its

conjugate. Note that the sign is positive in both exponentials.

The mass term then transforms as:

mψψ → mψei
θ
2
γ5ei

θ
2
γ5ψ = mψeiθγ5ψ (4A.7)

and so we see the origin of this term in Equation (4.9). Later in Section 4.2.1 we split this term in two

by rewriting the exponential as: ei
θ
2
γ5 = 1 cos θ

2
+ iγ5 sin

θ
2
. We also note that γµeiaγ5 = e−iaγ5γµ,

so the derivative term of the Lagrangian transforms becomes invariant under the global chiral

transformation:

iψγµ (∂µ + igAµ)ψ → iψei
θ
2
γ5γµ (∂µ + igAµ) e

i θ
2
γ5ψ (4A.8)

= iψei
θ
2
γ5γµei

θ
2
γ5 (∂µ + igAµ)ψ (4A.9)

= iψei
θ
2
γ5e−i

θ
2
γ5γµ (∂µ + igAµ)ψ (4A.10)

= iψγµ (∂µ + igAµ)ψ. (4A.11)

The transformed Lagrangian is then:

L′ = −1

4
FµνF

µν +
gθ

4π
ϵµνF

µν + iψγµ (∂µ + igAµ)ψ −mψeiθγ5ψ. (4A.12)

This might not seem that useful, but when one considers the path integral for the generating

functional:

Z[J ] =

∫
DψDψDAµei

∫
dx(L[ψ,ψ,Aµ]+J(x)...)

(4A.13)

under the same global chiral transformation, the measures Dψ and Dψ also transform. It has

been shown that under chiral transformation the integral measure for fermionic theories is not

invariant [47]. The case for the measure in the Schwinger model has been studied in [48]. The

relevant result is:

DψDψ → DψDψe−
igθ
4π

∫
d2x ϵµνFµν

. (4A.14)
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Thus, the generating functional becomes:

Z[J ] =

∫
DψDψDAµei

∫
dx(L′− gθ

4π
ϵµνFµν+J(x)...). (4A.15)

We can then consider the relevant theory as the one with the Lagrangian

Lfull = L′ − gθ

4π
ϵµνF

µν
(4A.16)

= −1

4
FµνF

µν + iψγµ (∂µ + igAµ)ψ −mψeiθγ5ψ. (4A.17)

which is the one shown in Equation (4.9), where the θ dependence is shifted from an explicit

θ-term to the fermion mass term.

4A.3 Legendre Transform

To obtain the Hamiltonian of the continuum Schwinger Model, we apply the Legendre transform

to the Lagrangian of Equation (4.9):

H =
∂L
∂ψ̇

ψ̇ +
∂L
∂ψ̇

ψ̇ +
∂L
∂Ȧµ

Ȧµ − L. (4A.18)

The derivatives of the Lagrangian with respect to the dotted fermion fields are:

∂L
∂ψ̇

=
∂L

∂(∂0ψ)
=

∂

∂(∂0ψ)

[
iψγµ∂µψ

]
(4A.19)

=
∂

∂(∂0ψ)

[
iψγ0∂0ψ − iψγ1∂1ψ

]
= iψγ0

∂L
∂ψ̇

=
∂L

∂(∂0ψ)
= 0. (4A.20)

For the derivative with respect to Ȧµ, we first consider:

∂L
∂(∂µAν)

=
∂L
∂Fαβ

∂Fαβ
∂(∂µAν)

(4A.21)

=
∂

∂Fαβ

[
−1

4
FµνF

µν

]
∂

∂(∂µAν)
[∂αAβ − ∂βAα]

=

[
−1

2
Fαβ

]
[δµαδνβ − δµβδνα]

= −1

2
[F µν − F νµ] = −1

2
[F µν + F µν ] = −F µν .
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From which we get that the derivative with respect to Ȧµ is:

∂L
∂Ȧµ

=
∂L

∂(∂0Aµ)
= −F 0µ = −∂0Aµ + ∂µA0. (4A.22)

We simplify this further by using the temporal gauge A0 = 0, thus remaining with so

∂L
∂Ȧµ

= −∂0Aµ = −Ȧµ. (4A.23)

The Legendre transform thus becomes:

H =
∂L
∂ψ̇

ψ̇ +
∂L
∂ψ̇

ψ̇ +
∂L
∂Ȧµ

Ȧµ − L (4A.24)

= iψγ0ψ̇ − ȦµȦµ − L

= iψγ0∂0ψ − ȦµȦµ +
1

4
FµνF

µν − iψγµ (∂µ + igAµ)ψ +mψeiθγ5ψ.

In 1 + 1 dimensions and using the temporal gauge, the terms containing only the gauge fields can

be simplified to:

1

4
FµνF

µν − ȦµȦµ =
1

4
(∂µAν − ∂νAµ)(∂µAν − ∂νAµ)− Ȧ0Ȧ0 − Ȧ1Ȧ1 (4A.25)

=
1

2
∂0A1∂

0A1 − Ȧ1Ȧ1 = −
1

2
Ȧ1Ȧ

1

and we can also merge the two fermion derivative terms:

iψγ0∂0ψ − iψγµ∂µψ = −iψγ1∂1ψ (4A.26)

Ultimately, the Hamiltonian density is given by:

H = −iψγ1 (∂1 + igA1)ψ −
1

2
Ȧ1Ȧ

1 +mψeiθγ5ψ. (4A.27)

Then the Hamiltonian is

H =

∫
dx

[
−iψγ1 (∂1 + igA1)ψ −

1

2
Ȧ1Ȧ

1 +mψeiθγ5ψ

]
, (4A.28)

which matches the result shown in [53] and Equation (4.10) with the appropriate definition of the

electric field E(x) = F 10 = −Ȧ1(x).
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4A.4 Kogut-Susskind Hamiltonian

The discretization using staggered fermions introduced in Section 4.2.1 can seem odd at first glance

as it is not the most straightforward way to apply it. However, some choices are made specifically

because the final Hamiltonian that we desire is an Ising-like one, so all terms containing multiple

fermion fields must either have the fields at the same site or at neighboring ones.

Remembering the definitions A1(xn)→ ϕn
ag
, E(xn) = Ȧ1(xn)→ −gL and

χn√
a
↔


ψu(xn) for n even

ψd(xn) for n odd

(4A.29)

we have the tools for performing the following transformations for the terms in Equation (4A.28).

The Electric Field Term The electric field term transforms simply as

Ȧ1Ȧ
1 = (gLn)(−gLn) = −g2L2

n. (4A.30)

If we perform the integration, we get:∫
dx Ȧ1Ȧ

1 = −ag2
∑
n

L2
n. (4A.31)

The Mass-Theta Term First, one expands the term into sine and cosine as follows:

ψeiθγ5ψ = 1 cos θψψ + i sin θψγ5ψ (4A.32)

The mass term ψψ transforms in a simple way:

ψ†(x)γ0ψ(x) =
(
ψ†
u(x) ψ†

d(x)
)1 0

0 −1


ψu(x)
ψd(x)

 (4A.33)

= ψ†
u(x)ψu(x)− ψ

†
d(x)ψd(x)

=
1

a

(
χ†
2nχ2n − χ†

2n−1χ2n−1

)
.
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Then, when integrated, this gives:∫
dx ψψ = a

∑
n

1

a

[
χ†
2nχ2n − χ†

2n−1χ2n−1

]
=
∑
n

(−1)nχ†
nχn. (4A.34)

Next, we consider the pseudo-mass term ψγ5ψ

ψ(x)γ5ψ(x) = ψ†(x)γ0γ0γ1ψ(x) (4A.35)

=
(
ψ†
u(x) ψ†

d(x)
) 0 1

−1 0


ψu(x)
ψd(x)


= ψ†

u(x)ψd(x)− ψ
†
d(x)ψu(x).

Notice that these terms mix the upper and lower components, however, each term is still at a

single point in x. A straightforward translation to the staggered fermions would yield:

ψ(x)γ5ψ(x) =
1

a

[
χ†
2nχ2n−1 − χ†

2n−1χ2n

]
. (4A.36)

However, this is undesirable as when summing over all sites x there would only be terms that

contain χ2n and χ2n−1, but none that χ2n and χ2n+, which would force us to deal with even

and odd sites differently when applying the Jordan-Wigner transformation. A more symmetric

discretization can be obtained by using the approximation ψ(x+ 1) = ψ(x) +O(a), so that:

ψ†
u(x)ψd(x)− ψ

†
d(x)ψu(x) ≈

1

2

[
ψ†
u(x)ψd(x)− ψ

†
d(x)ψu(x)

]
(4A.37)

+
1

2

[
ψ†
u(x)ψd(x+ 1)− ψ†

d(x+ 1)ψu(x)
]
.

where we take the average of the term between two neighboring sites. Keeping in mind that

x+ 1↔ x+ 2a we get:

ψ(x)γ5ψ(x) ≈
1

2a

[
χ†
2nχ2n−1 − χ†

2n−1χ2n

]
(4A.38)

+
1

2a

[
χ†
2nχ2n+1 − χ†

2n+1χ2n

]
= − 1

2a

[
χ†
2n−1χ2n − χ†

2nχ2n−1

]
+

1

2a

[
χ†
2nχ2n+1 − χ†

2n+1χ2n

]
,

179



which is now symmetric. When integrated over this term becomes:∫
dx ψ(x)γ5ψ(x) =

1

2

∑
n

(−1)n
[
χ†
nχn+1 − χ†

n+1χn

]
. (4A.39)

Combining the two results we just obtained, the mass term of the Hamiltonian is then:∫
dx mψeiθγ5ψ = cos θ

∑
n

(−1)nχ†
nχn +

i

2
sin θ

∑
n

(−1)n
[
χ†
nχn+1 − χ†

n+1χn

]
. (4A.40)

The Derivative Term Again, since we are looking for a symmetric treatment of the upper and

lower components of the fermion spinors, we discretize the derivative term by applying a forward

difference discretization for ∂1ψd(x) and a backward difference for ∂1ψu(x). This leads to:

ψ†(x)γ0γ1∂1ψ(x) =
(
ψ†
u(x) ψ†

d(x)
)0 1

1 0


∂1ψu(x)
∂1ψd(x)

 (4A.41)

= ψ†
u(x)∂1ψd(x) + ψ†

d(x)∂1ψu(x)

= ψ†
u(x)

ψd(x+ 1)− ψd(x)
2a

+ ψ†
d(x)

ψu(x)− ψu(x− 1)

2a

=
1

2a2
χ†
2n [χ2n+1 − χ2n−1] +

1

2a2
χ†
2n−1 [χ2n − χ2n−2] .

Thus, when integrating, we get a simple hopping term:∫
dx ψγ1∂1ψ = a

∑
n

[
1

2a2
χ†
2n [χ2n+1 − χ2n−1] +

1

2a2
χ†
2n−1 [χ2n − χ2n−2]

]
=

1

2a

∑
n

[
χ†
nχn+1 − χ†

n+1χn

]
.

The Vector Term The last term to transform is the one containing the gauge field:

ψ(x)γ1A1(x)ψ(x) =
(
ψ†
u(x) ψ†

d(x)
)0 1

1 0


A1(x)ψu(x)

A1(x)ψd(x)

 (4A.42)

= ψ†
u(x)A1(x)ψd(x) + ψ†

d(x)A1(x)ψu(x).

Again, we have terms that mix the upper and lower components of ψ(x), so we discretize the

derivative in the same way that we did for the plain derivative term. The gauge field is not resolved
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at the level of the staggered sub-lattice, so we set A1(x) = ϕ2n/(ag) = ϕ2n−1/(ag). Again using

the approximation ψd(x) ≈ ψd(x+ 1) to mix the fermion field at different x we get:

ψ(x)γ1A1(x)ψ(x) ≈
1

2

[
ψ†
u(x)A1(x)ψd(x) + ψ†

d(x)A1(x)ψu(x)
]

(4A.43)

+
1

2

[
ψ†
u(x)A1(x)ψd(x+ 1) + ψ†

d(x+ 1)A1(x)ψu(x)
]

=
1

2a2g

[
χ†
2nϕ2n−1χ2n−1 + χ†

2n−1ϕ2n−1χ2n

]
+

1

2a2g

[
χ†
2nϕ2nχ2n+1 + χ†

2n+1ϕ2nχ2n

]
.

Upon integration, this term takes the simple form:∫
dx ψ(x)γ1A1(x)ψ(x) = a

∑
n

1

2a2g

[
χ†
2nϕ2n−1χ2n−1 + χ†

2n−1ϕ2n−1χ2n

]
(4A.44)

+ a
∑
n

1

2a2g

[
χ†
2nϕ2nχ2n+1 + χ†

2n+1ϕ2nχ2n

]
=

1

2ag

∑
n

[
χ†
nϕnχn+1 + χ†

n+1ϕnχn

]
.

4A.4.1 The Discretized Schwinger Hamiltonian

The pieces of the continuum Hamiltonian, Equation (4A.28), translated to staggered fermions, are:∫
dx
[
− 1

2
Ȧ1Ȧ

1
]
=
g2a

2

∑
n

L2
n (4A.45)∫

dx
[
mψeiθγ5ψ

]
= m cos θ

∑
n

(−1)nχ†
nχn + i

m

2
sin θ

∑
n

(−1)n
[
χ†
nχn+1 − χ†

n+1χn

]
∫
dx
[
− iψγ1∂1ψ

]
= − i

2a

∑
n

[
χ†
nχn+1 − χ†

n+1χn

]
∫
dx
[
gψγ1A1ψ

]
=

1

2a

∑
n

[
χ†
nϕnχn+1 + χ†

n+1ϕnχn

]
.

With the assumption that the field ϕn is small, we can use the approximation e±iϕn ≈ 1± iϕn and

introduce a sub-leading term to get to the form of the Hamiltonian shown in [53], which is the
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one we showed in Equation (4.12):

H = −i
∑
n

(
1

2a
− (−1)nm

2
sin θ

)[
χ†
ne
iϕnχn+1 − χ†

n+1e
−iϕnχn

]
(4A.46)

+m cos θ
∑
n

(−1)nχ†
nχn +

g2a

2

∑
n

L2
n.

4A.5 Jordan-Wigner Transformation

The last step in constructing the Schwinger Hamiltonian for quantum simulations is to apply

the Jordan-Wigner (JW) transformation to the discretized Hamiltonian. This is a straightforward

process, but here we will show the most important details. The JW transformations read:

χn =

(∏
l<n

−iZl

)
Xn − iYn

2
χ†
n =

(∏
l<n

iZl

)
Xn + iYn

2
, (4A.47)

First, we look at Gauss’s law, which can be written as:

Ln − Ln−1 = χ†
nχn −

1− (−1)n

2
=

(∏
l<n

iZl

)
Xn + iYn

2

(∏
l<n

−iZl

)
Xn − iYn

2
− 1− (−1)n

2
.

(4A.48)

For every given n, if we fix the value at the boundary to a constant L0, we have by induction:

Ln = L0 +
1

2

n∑
l=1

(
Zl + (−1)l

)
. (4A.49)

The constant L0 can be reabsorbed in the definition of θ, so we will not consider it. This allows us

to transform the last term in Equation (4.12) as:

N−1∑
n=1

L2
n =

1

4

N−1∑
n=1

[
n∑
l=1

(
Zl + (−1)l

) n∑
k=1

(
Zk + (−1)k

)]
= (4A.50)

=
1

4

N−1∑
n=1

[
n∑
l=1

n∑
k=1

ZlZk + 2
n∑
l=1

n∑
k=1

(−1)kZl + const

]
=

=
1

2

N−1∑
n=1

[ ∑
1≤k<l≤n

ZkZl − (n mod 2)
n∑
l=1

Zl

]
,

where we neglected the constant terms. We can easily identify these two terms with HZZ and

the second term of HZ in Equation (4.16). Next, we focus our attention on the fermionic terms,
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where we first perform the rescaling χn →
∏

l<n[e
−iϕn ]χn to remove the explicit dependence on

the gauge field ϕn. One can check that this leaves the Hamiltonian unchanged, as for the diagonal

term all contributions cancel immediately, while for the hopping terms the exponentials cancel up

to n− 1, with the last being canceled by the factor eiϕn already present in the Hamiltonian. The

diagonal term then, under the JW transformation, becomes:

χ†
nχn =

1

4

(∏
l<n

iZl

)
(Xn + iYn)

(∏
l<n

−iZl

)
(Xn − iYn) = (4A.51)

=
1

4

(∏
l<n

Z2
l

)
(Xn + iYn)(Xn − iYn) =

i

4
[Xn, Yn] = −

Zn
2
.

This can easily be applied to the cosine mass term and get the first term of HZ . The last piece

remaining is the hopping term. This is a well-known result and a classic example of the JW

transformation:

χ†
n+1χn =

1

4

( ∏
l<n+1

iZl

)
(Xn+1 + iYn+1)

(∏
l<n

−iZl

)
(Xn − iYn) = (4A.52)

=
i

4
(Xn+1 + iYn+1)Zn(Xn − iYn) = −

i

4
(Xn − iYn)(Xn+1 + iYn+1)

χ†
nχn+1 =

1

4

(∏
l<n

iZl

)
(Xn + iYn)

( ∏
l<n+1

−iZl

)
(Xn+1 − iYn+1) =

= − i
4
(Xn + iYn)Zn(Xn+1 − iYn+1) =

i

4
(Xn + iYn)(Xn+1 − iYn+1),

so their difference is:

χ†
nχn+1 − χ†

n+1χn =
i

2
(XnXn+1 + YnYn+1). (4A.53)

Putting all these results together and plugging them into Equation (4.16) one gets, after splitting

the terms by their Pauli matrix content, i.e. HZ for the diagonal terms, H± for the hopping term

and HZZ for the Z interacting term one gets:

HZZ =
J

2

N−1∑
n=2

∑
1≤k<l≤n

ZkZl

H± =
1

2

N−1∑
n=1

(
w − (−1)nm

2
sin θ

)
[XnXn+1 + YnYn+1] (4A.54)

HZ =
m cos θ

2

N∑
n=1

(−1)nZn −
J

2

N−1∑
n=1

(n mod 2)
n∑
l=1

Zl.
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CHAPTER 5

SUMMARY AND OUTLOOK

Lattice QCD is a mature field of research that, thanks to developments in HPC, is now capable

of producing precision results for QCD at the hadronic scale. These results all rely on MCMC

methods and are numerically very challenging. In particular, the highest computational cost

is given by the iterative linear systems solvers needed both in generating ensembles of lattice

gauge field configurations and in quark propagators for measuring observables. In this work, we

presented three vastly different attempts to improve LQCD calculations.

In Chapter 2, we have presented a strategy to include ML methods into LQCD by reducing the

cost of computing two-point hadron correlators by using data from quark propagators computed

with different stopping criteria in the BiCGSTAB solver. The results for the GNN models indicate

that the approach is not suited for accurately reconstructing the correlator’s distribution. On the

contrary, the SPNN models we presented indicate that the underlying idea is valid. The correlator

calculated using ML, while much less expensive numerically, has a comparable distribution to

that coming from a fully precise calculation. However, the ML procedure does lose some of the

correlation between the different values of t, which make the determination of derived quantities,

such as the effective mass, problematic. Thus, going forward, this issue needs to be addressed,

possibly shifting the method to an approach similar to the TSM, where the ML model is used on a

single configuration with data coming from multiple stochastic sources computed on it.

The OPENLAT Initiative aims to state-of-the-art ensembles of lattice gauge field configurations

using SWF. In doing so, we want also to define and uphold quality standards for the ensembles

and provide high-quality metadata to users. In Chapter 3, we have presented some examples of

these procedures, one of which is the Bayesian analysis framework for hadron spectroscopy. The

results of the method are reliable and stable under all the parameter space we have applied it to.

The spectrum results also show the excellent scaling properties of the SWF ensembles, which

make them good candidates for future studies of LQCD.
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Quantum Computing is a relatively new approach in the context of lattice gauge theories, but

it could revolutionize the field once the hardware advances allow large-scale simulations because

it allows calculations in real-time, while not being plagued by the sign problem. Currently, there is

no well-established way to deal with the SU(3) symmetry group or a four-dimensional space-time

on a QC, so research is focused on simpler models, which can give valuable insights on how to

approach full QCD eventually. In Chapter 4, we investigated three algorithms for state preparation

for the Schwinger model and discussed their strengths, weaknesses and potential applicability to

NISQ machines. These algorithms are general enough to be applied to any model. In particular,

the RA is very promising for after the NISQ era because it allows the preparation of both the

ground state and excited states with high precision.
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